
Chapter 4 CURVES

Force Fields

According to Newton's laws of motion, a particle will move in a straight
line at constant velocity unless it is subjected to forces. In that case it will

accelerate according to Newton's third law

F = ma (4.1)

where m is the mass of the particle. In this chapter we shall study the motion

of particles subjected to variable forces. That is, we must allow the possi

bility that the force applied to the particle depends upon its position (as in

gravitation) or even upon time (in the case of a variable electromagnet).
This gives rise to the notion of a field of force. A field of force will be given
in this way: at time t and position x a particle of unit mass will experience
a force F(x, t). Thus for each t0 we have associated a vector F(x, f0) to

each point x. We can illustrate this as in Figure 4.1. Now, we have seen

that a particle of unit mass situated at x0 at time t = 0, with a velocity v0

at t = 0 will follow the path of motion determined by the given field of force

as the solution of the differential equation

f"(0 = F(f((), 0

f '(0) = v0

f(0) = x0

306
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Figure 4.1

The path ofmotion is a curve in space given by the function fwhich solves

this equation.

Examples

1. Suppose a particle moves around the unit circle in the plane

according to the function

f(0 = (cos t, sin f) (4.2)

What force field would account for this motion? Differentiating

twice we find that

f'0) = (-sin t, cost)

f"(0 = (-cos t, -sin 0 = - f (0

Thus the particle is accelerating toward the origin with constant

magnitude (see Figure 4.2). This motion can be accounted for by

the force field

F(z,t)= -z

In fact, in the presence of this field, if a particle has a velocity
at time

t = 0 orthogonal to its position vector, then it will continue to move
in

a circle centered at the origin. We can see this by solving the differ

ential equation

f"(t) = -fit)

f(0) = zo,f'(0) = izo
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Figure 4.2

The solution of this equation is

f(z) = z0 e" = z0(cos t, sin f)

which is just (4.2) with z0
= 1.

2. Suppose we are given in space a force field directed toward the

z axis with magnitude the distance from the z axis (Figure 4.3).

F(x.y,z) =-(x,y,0)

(Jf.y.z)

Figure 4.3
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Here again the force field is independent of time and is given by

F(x,y, z, f)= ~(x,y,0)

If a particle is at (1, 0, 0) with an initial velocity of (0, 1, a), what is
its path of motion? We must solve this differential equation for

three unknown functions f(f) = (x(t), y(t), z(t))

f"(0 = (x"(0, y"(t), z"(t)) = (x(f), X0, 0)

x(0) = 1, y(0) = 0, z(0) = 0

x'(0) = 0, y'(0) = 1, z'(0) = a

The solution is easily found to be

f(0 = (cos f, sin t, at)

Thus, if a = 0, the path of motion is a circle in the plane z = 0. If a

is positive, the path of motion is an upward spiral lying over the unit

circle, of slope a, and if a < 0, the path followed is a downward spiral

(Figure 4.4).

3. Time-independent fields. If we are given a time-independent
force field on a domain in R2, or R3, and we graph sufficiently many

values of the field, it seems to be a broken line picture of a family of

curves. In fact, there is a family of curves which fits the picture in

this sense: there is a curve through each point x which is tangent to

the vector F(x) at that point. These curves are called the lines of

force of the field and are found by solving the differential equation

f '(f) = F(f(0)

f(0) = x0

The solution of this differential equation describes the line of force

passing through the point x0 .

Fluid Flows

The general notion of field of vectors arises in many other ways besides

as force fields. Such an example which gives rise to a field is that of a fluid

in motion in a certain domain in R3. There are various ways of describing

that flow. First of all, we may idealize, by assuming that at the time t = 0,
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a = 0

a > 0 a< 0

Figure 4.4

there is a particle at each point x0 in R3. Then we can describe the flow by

describing the motion of each particle. The particle which is at x0 at time

t = 0 follows a certain path which is given by a function f(x0 , t). The

equations of motion are thus

x = f(xo,0

Precisely, the position x at time t of the particle originally at x0 is f(x0 , 0-

We assume that particles are neither created nor destroyed; this amounts to

asking that, for each t the function x0 -> f(x0 , 0 is one-to-one and onto, and

thus can be inverted. So we can also write

x0
= <b(x, t)

for some function <b. Precisely, the original position of the particle at x at

time - 1 was (b(x, t).
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4. Suppose a gas is rising at constant speed, and spiraling around

the vertical axis. Thus the motion of particle is a helix as described

in Example 2. We do best to express this motion in cylindrical
coordinates: Let z be the (complex) coordinates in the plane (z = reie)
and w the height off the plane. Thus the path of motion described

by the gas is

(z,w) = (zoeu,at + w0) (4.3)

Thus the particle originally at (z0 , w0) will be at z0 e", w0 + at at

time t . We can certainly invert these equations :

(z0, w0) = (ze-it, w-at) (4.4)

Now, another way to describe a fluid flow is by its velocity. Let v(x, t)
be the velocity of the particle which is at position x at time t . The field v is

called the velocity field of the flow. We can find the equations of motion

from the velocity field by solving the appropriate differential equation. For

the function f (x0 , 0 describes the motion of the particle originally at x0 .

The velocity of this particle at time t is f '(x0 , 0 and its position is f (x0 , t).
Thus we must have

f'(xo,0 = v(f(xo,0, 0

f (x0 , 0) = x0

This equation can be solved uniquely.

5. Let us find the velocity field of the gas flow in Example 4. The

flow equations are (4.3). The velocity of the particle originally at x0 is

(z',w') = (iz0e",a)

To find the velocity field we must write this as a function of position
at time t, rather than original position. We can do this by means of

the inversion (4.4), obtaining as velocity field

y(z, w) = (iz, a)

6. Suppose a fluid on the plane is spiraling in toward the origin

(Figure 4.5) according to this equation of flow
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Figure 4.5

Here the particle at time t = 1 moves toward the origin so that its

argument is proportional to time elapsed, and its distance from the

origin is inversely proportional to time. Then

iz0eil z0eu I 1\

* = -

F-'=(,")Z(0
Thus the velocity field is

v(z,t)= (--)z
The angular velocity is thus constant whereas the radial velocity
decreases as time goes on.

7. Suppose now a fluid spiraled in toward the origin so that its

velocity field was time independent, for example,

v(z) = (i l)z

The equations ofmotion are the solutions of

/'(0 = 0-i)/0)

/(0) = z0
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This gives

/(z) = e("1
+ i)(

= e-'ei'

In this case the distance from the origin decreases exponentially with

time (Figure 4.6).

We shall make a study of the geometry ofpaths ofmotion of single particles
and fluid flows, or families of motions, in this chapter. This study is a con

tinuation of analytic geometry, and begins the subject of differential geometry.

Figure 4.6

4.1 Parametrization of Curves

A curve in R" is a one-dimensional subset T of R". This means that the

set T can be put into one-to-one correspondence with a line, in a smooth way.

We make this notion a little more precise.

Definition 1. The image in R" of an interval under a continuously differ

entiable one-to-one function with a nowhere vanishing derivative is called a

C1 curve. If the function is A>times continuously differentiable we shall call

this curve a Ck curve. The particular function is called a parametrization

of the curve.
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Examples

8. The unit circle in R2 is a curve. It has this parametrization:

T : z(f) = (cos t, sin t) teR (4.5)

Since z'O) = ( sin t, cos t) is never zero (the sine and cosine are

never simultaneously zero), this is a good parametrization.
We could also parametrize the unit circle in this way :

z(t) = (t,(l-t2)1'2) (4.6)

but this parametrization fails at t = +1, since the function (1 f2)1/2
is not differentiable there. Notice that (4.6) does not parametrize
the whole circle, but only the upper semicircle. Both of these failings
can be alleviated by introducing parametrizations which cover the

other parts of the circle. That is,

z(0 = (0 - t2)1'2, 0

will parametrize the circle in the right half-plane,

z(0 = 0, -(l-*2)1'2)

takes care of the lower semicircle, and so on.

9. It is often convenient to use complex notation to describe curves

in the plane. For example, the parametrization of the circle (4.5)
can be written as

z(0 = cos t + i sin t = eu

Another curve is the spiral :

z(f) = ect

where c is some complex number. Writing c = a + ib, this becomes

z(t) = ett,eibt

or, in polar notation, z = rew

r(t) = e"' 0(0 = bt
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Thus the modulus of z varies exponentially with /, and the argument

is linear in t (see Figures 4.7 and 4.8)

10. The curve T:

x(t) = (sin t, cos t, 0 (4.7)

called a right circular helix, is pictured in Figure 4.9. Since

x'0) = (cos t, sin t, 1)

is never zero, (4.7) is a valid parametrization of the curve.

1 1 . The intersection of two cylinders with different axes is a curve

(see Figure 4.10). Suppose the cylinders are both of radius 1 and

one, Cx, has as axis the y axis, and the other, C2 ,
has as axis the x axis.

Then Cx has the equation

x2 + z2 = 1 (4.8)

and C2 has the equation

y2 + z2 = 1 (4.9)

z(t) =eu',Rea >0

Figure 4.7
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zU) = e"',Rea < 0

Figure 4.8

The intersection is, of course, the set of points where both equations
hold and thus can be written x2 = 1 - z2, y2 = 1 - z2. We can

thus parametrize at least part of the curve by

x = (l-z2)1'2 y
= (l-z2)1/2 or

f(0 = ((i-2)1/2,0-f2)1/2,0

Figure 4.9
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Figure 4.10

Other parts will be found by variations on this theme :

f(0 = (-(l-f2)1/2,(l-f2)1/2,0

f(0 = (M,(l-*2)1/2)

and so on.

A simpler parametrization is found by the substitution x = cos f.

Then we have the two distinct branches of the intersection given by

fi(0 = (cos, f, cos t, sin t)

f2(0 = (cos, t,
- cos t

,
sin t)

Implicitly Defined Curves

In the situation of the above example, we say that the curve is given

implicitly by the Equations (4.8) and (4.9). More often than not, when we

are given a collection of equations such as these, we can determine, just by
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working with them, whether or not they do implicitly define a curve. Never

theless, the theoretical question remains: under what conditions can the

set defined by a collection of equations be parametrized as a curve ? We

have already answered this question in R2 in Theorem 2.14. We shall

restate the conclusion as a fact about curves.

Proposition 1. Suppose that F is a differentiable real-valued function

defined in a neighborhood of (a0 , b0) and F(a0, b0) = 0 but dF(a0 , b0) # 0.

Then the set

{(x,y)eN:F(x,y) = 0} (4.10)

is a curve in some neighborhoodN of(a0 , b0).

Proof. Since dFia0 , b0) = 0, then either (SF/8x)(a0 , b0) = 0 or i8F/Sy)iao , b0)
= 0. Suppose the latter. Then, according to Theorem 2.16, there is an e > 0 and a

differentiable function g defined on the interval (a0 e, a0 + e) such that Fix, y) = 0

if and only if y = gix). In particular, gia0) = b0 . Let /: (a0 e, a0 + e) ->- R2 be

defined by /(f) = (f, git)). Then / parametrizes the set (4.10) near (a0 , b0), and

clearly f'(t) = (1, g'it )) ^ 0. If instead (dF/8x)ia0 , b0) # 0 we can give the same

argument merely by changing the roles of x and y.

In higher dimensions the situation is a little more complicated. We shall

describe it in R3. IfF,G are two differentiable functions defined in a neigh
borhood ofa point p0 , and VF(p0), VG(p0) are independent, then the set

{p: Fiji) - F(p0) = 0, G(p) -

G(p0) = 0} (4.1 1)

is a curve through p0.

The verification of this fact is basically another use of the fixed point
theorem, complicated by some more linear algebra. We first assume that

F(Vo) = 0 = G(p0). Since the vectors VF(p0), VG(p0) are independent, we

can change coordinates in R3 so that VF(p0) = E2 and VG(p0) = E3 . That

is, with respect to the new coordinates (x, y, z), dF/dx(p0) = 0, dF/dy(p0) = 1,

dF/dz(pQ) = 0 and dG/dx(p0) = 0, dG/dy(j,0) = 0, dG/dz(p0) = 1. Now let

Po
= (xo > yo , zo) ; fr x near x0 we want to show that there are uniquely

determined y, z such that

F(x, y, z) = 0 G(x, y, z) = 0

Following Newton's method, we ask to find the fixed point in the y, z plane
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of the transformation

/ dF dG \
T(y, z) = [y + Yy

iv*) Fix> y> Z^>z +
Tz

(Po) (x' y' z))

Our conditions VF(p0) = E2 , VG(p0) = E3 will guarantee that in some neigh

borhood of p0 ,
T is a contraction. Thus there are unique y = g(x), z = h(x)

such that

T(g(x), h(x)) = (g(x), h(x))

or

F(x, g(x), h(x)) = 0 = G(x, g(x), h(x))

Thus the function /(0 = 0, g(t), h(t)) parametrizes the set (4.11) as a curve.

Examples

12. At what points in the plane is the set ex+y = y a curve? Let

F(x, y) = ex+y -

y. Then VF(x, y) = (ex+y, ex+y - 1). Since dF/dx

is never zero, this is everywhere a curve and the equation ex+y y
= 0

determines x as a function of y implicitly. dF/dy is zero when

x + y
= 0. The only point on the curve where ex+y = y and x + y

= 0

is ( 1, 1), so at that point we cannot expect to find y as a function

of x.

Notice, that even though we cannot explicitly determine the function

x =f(y) given implicitly by ex+y = y, we can find its derivative. For

exp(/(y) + y)
-

y
= 0

so upon differentiating we have

exp(/(y) + y)(f'(y) + D
- 1 = 0

or

/'(y) = exp[-(/(y) + ^)]-l

13.

F(x, y) = x sin xy
- cos y (4.12)
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WF(x, y) = (sin xy + xy cos xy, x2 cos xy + sin y)
If x > 1, dF/dy(x, y) # 0, so (4.12) defines y implicitly as a function

of x. Differentiating (4.12) with respect to x we find

sin xy + x cos(xy)(y + xy') + y' sin y = 0

or

sin xy + xy cos xy
y
=

: 2

sin y + x cos xy

14. F(x, y, z) = x3y + y2, G(x, y, z) = xyz + ez.

VF = (3x2y, x3 + 2y, 0) VG = (yz, xz, xy + e2)

VF and VG are dependent when

3x2y x3 + 2y 0

yz xz xy + ez

These equations become

xy + ez = 0 and y
= x3

or

3x2y = 0 = x3 + 2y

The first pair has no solutions, and the second pair amounts to x = 0

and y
= 0. But the set F(x, y, z) = 0, G(x, y, z) = 0 never intersects

this plane, so everywhere on that set F and G are independent. Thus

{(x, y, z): F(x, y, z) = G(x, y, z) = 0}

is a curve in R3.

Comparison ofParametrizations

Now, we have seen that a given curve admits many parametrizations, and

it would be to our advantage to be able to single out a best possible one. In

the study of the motion of particles there is a distinguished parameter, that
of time. But as far as the geometric study is concerned we can take any

parametrization we care to, the only criterion being that of convenience.
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Geometrically, a most convenient parameter, or measure, along the curve

is that of length as measured from a fixed point.
Before considering the particular parametrization by arc length, let us first

see how to compare two different parametrizations. Suppose T is a curve,

parametrized by

x = f(t) a<t<b

If a is a continuously differentiable function with nonzero derivative defined

on the interval [a, /J] and taking values on the interval \a, b], then the

composed function / a also parametrizes T. That is, we can write T

as the image of

x = <700=/(<t(t)) *<z<0

If t increases as f does, then these two parametrizations determine the same

sense of direction along the curve T. This sense of direction is called

orientation. We know from calculus that the necessary and sufficient

condition for t, x to increase simultaneously along the curve is that a' > 0

on the interval [a, j8]. We shall say that x is an orientation-preserving

parameter if this condition is satisfied, and otherwise x is orientation reversing.

On the other hand, if we started out with two different parametrizations

of a curve

r:x=/(0 or x = flf(t) (4.13)

then there must exist a function a relating the two parameters. For each

point of T corresponds to precisely one value of t and precisely one value

of t. The correspondence

T-0(T)=/(t)-*f

defines the function a. We shall verify below that a is a differentiable

function of t and we have g{x) = f(o(x)).

Notice that, given the two parametrizations, so that t
= o(x), we have by

the chain rule

g'(r)=f'(o(x))-o'(x) (4-14)

Thus the vectors g'(x) and/'O) are collinear when t, x are the same points,

and point in the same direction when a' > 0, that is, when g,f induce the

same orientation along T.
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Definition 2. Let T be a curve parametrized by x =f(t), a<t<b. The

unit tangent vector to T at /(f) is the vector

no = rS
l/'0)l

By the above remarks we see that the unit tangent vector is the same no

matter what parametrization we choose so long as it induces the same

orientation. For if we have the two parametrizations (4.13), then by (4.14)
(since a' > 0)

/'0)
_

/VOOVO)
_

fit)

Ifftol l/VO)) r'OOl l/'(0l

when f, x determine the same point of T.

Examples

15. Consider the unit circle, given parametrically by

z = e"

Then z' = ie", which is a unit vector, soJ"= ieu.

Notice : we have T = iz, so that the tangent vector is orthogonal to
the position vector.

More generally, consider the spiral z = eat, where a is a complex
number. Then z' = aeat, so the tangent vector is exp f(Im a + arg a)t.
Notice that the angle between the tangent vector and the position
vector is

arg T arg z = arg a

Thus T, z always make the same angle.

16. For the curve in space given by

x = (t, t2, t3)

we have

ft = (l,2t,3t2)
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so

T(0=(i + 8f2l+9fr2(1'2t'3f2)
Now, here is the verification of the fact that two parametrizations are

related by a continuously differentiable function.

Proposition 2. Let T be a curve, and f: [a, b]->r, g: [a, /?] -> T two

parametrizations of T. Then there is a continuously differentiable function <r

mapping [a, b~] one-to-one onto [a, /?] such that g(x) = f(o(x))for all x e [a, /?],
andf(t) = g(o-l(t)), for all t e [a, 6].

Proof. Let t g [a, /?]. Since /maps [a, b] one-to-one onto V there is precisely
one te[a, b] such that fit)=gir). Define <t(t) = t. Then a is a well-defined

function from [a, /3] to [a, b]. a is one-to-one. Suppose airL) = ct(t2). Then

9(ri) =/(o-(t0) =/(a(r2)) =^(r2)

Since g is one-to-one we must have ti=t2.

a maps [a, /3] onto [a, 6]. For if t 6 [a, 6] there is a point t g [a, /?] such that

fit) = gir). Clearly, then t = o-(t).

We now have only to verify that a is a continuously differentiable function. Let

t0 e [a, ft] and f0 = o-(t0). Now / is a differentiable function at f0 and /'(f0) = 0.

Let / = (/,...,/) in coordinates. There is a / such that />(/<>) ^ 0. Then

/ is a real-valued continuously differentiable function of a real variable and

since /'j(fo) ^ 0, it is invertible. That is, there is a function /; defined on the

range of/ near f0 such that hifit)) = t for f near f0 . /? is also continuously differ

entiable. Now, since /(o-(t)) =#(t), we have /j(<t(t)) =^/t), so

^(t)=(/(o-(t)) = (/Io^)(t)

Since and /} are continuously differentiable so is <j. The proposition is proven.

Without the requirement that the derivative of the parametrization is

nonzero we would in general not have such a good relationship between

different parametrizations. Notice that by the same argument the inverse

mapping <r-1 to o is also continuously differentiable. Since o-"1 <r(t) = t,

for all f e (a, b), we must have, by the chain rule,

(ff-1)'W0)-ff'(0 = i
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so cr'O) is also never zero. If it is always positive, a is an increasing function

of t; if always negative o is a decreasing function of t. Notice that if

/ g are two parametrizations of a curve and they do reverse orientation,
then they will become compatible simply by negating one of the param

eters. Thus if /is not compatible with g, then/: \_-b, a] - C defined by
f(t) =/( 0 certainly is.

If/: la, b~\ -> T is a parametrization of a curve we shall call f(a) the left

end point of T and f(b) the right end point.

The Tangent Line

Now, let T be a curve in R", and x0 a point on T. The tangent line to T

at x0 is the straight line through x0 which best approximates the curve. We

shall show that this is the line through the tangent vector and is given by this

equation

x = x0 + tT(x0) t e R

The tangent line at x0 can be computed as the limiting position of lines

through x0 and nearby points xx on T, as xx -> x0 (Figure 4.11). Let L(xx)
be that line. Then Z,(xj) is the set of all vectors originating at x0 and parallel
to xx

-

x0 . Let /give a parametrization of T so that x0
= /(f0), xx = f(tx).

Now L(xx) is the set of points x such that x x0 is parallel to

xi-x0=/01)-/0o)

But that is the same as the set of points x such that x -

x0 is parallel to

fih) -fjtp)

h-t0

Figure 4.11
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Now Xt
-> x0 is the same as t

x
-> 1

0 and the limit of the difference quotient as

fj - f0 is /'(f0)- Thus L0u) tends t0 tne lme through x0 and parallel to

/'00), as desired.

Examples

17. Consider the helix (Figure 4.9), given by the parametrization

f(0 = (a cos t, a sin t, bt)

Then

f'O) = ( a sin t, a cos t, b)

f is a positive parametrization if we take for the unit tangent

T(0 = r-2 T2TT72 (~fl sin *' a cos ' b>> (4-15)
w

(a2 + b2)1'2

(see Figure 4.12).

18. A damped helix (Figure 4.13) parametrized by

f(0 = (e' cos t, e' sin t, bt)

Thus

f'O) = (e'(cos t
- sin t), e'(sin f + cos t), b)

Figure 4.12
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Figure 4.13

so we can take as the tangent vector

T(0 =
(2e2t + b2)1'2

^' (-CS ' ~ Sin ^' e'(sin * + C0S ^' ^ ('4*16^

Notice that the curve on the unit sphere swept out by the tangent
is the same for both helices (Figure 4.14), and that the functions

(4.15) and (4.16) give two different parametrizations of this curve.

If we consider the parameter as t, then the
"

moving point
"

described

by (4.15) has no tangential acceleration, whereas in (4.16) it is acceler

ating exponentially.

19. A different helix is this one (Figure 4.15):

f(0 = (cos t, sin t, e')

Here we take as tangent vector

T(0 =
(1 + e2()i/2

(~sin '> cos '> e<)
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Figure 4.14

(Figure 4.16). This again is a helix on the unit sphere which tends

to the equator as t -> - oo and winds rapidly around the north pole

as t -> + oo. (Notice that

z(T(0) =

1

(l + e~2<)
-2t\l/2

?1 as t -

* 0 as t -

oo

-oo)

Figure 4.15
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Figure 4.16

20. The intersection of a sphere and a cylinder (Figure 4.17)

x2 + y2 + z2 = 1

(x-i)2 + y2=i

In order to avoid the cross at (1, 0, 0) we shall restrict attention to the

part of the curve lying above the xy plane. Let us first parametrize
this curve. We shall use as parameter the angle 9 as shown in the

figure. Then

x(0) = i + i cos 9 y(9) = \ sin 9

and z(6) is the point on the unit sphere lying above (x(6), y(9), 0),
thus z(9) is the positive square root of 1 - (x(0))2 - (y(8))2, which is

/l-cos0\1/2 .
9

(2) =Sm2

Thus, we can parametrize this curve with the function

f(0)=(- + -cos0,^sin0,sin^
Then

f'(6) =
-

1
- sin 6, cos 9, cos -1
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and we can take as tangent line

(2
\1^2/ 9\

JTc^j {-^e^os9,oos^ (4.17)

Notice that this does not parametrize T at the point (1, 0, 0), since

this point corresponds to both parametric values 0, 2n. In fact, T

is not a curve at the point (1, 0, 0) since it does not have a unique

tangent line: the limiting position to (4.17) as x-> (1, 0, 0) is either

(0,1, 1)/V2or(0, 1, -1)/V2!

EXERCISES

1. Find a parametrization for the curve of intersection of the ellipsoid

x2 + iy2 + z2 = 1

with the cylinder

x2 + z2 = 1

2. Parametrize the intersection of the paraboliod z=x2 + y2 with the

unit sphere x2 + y2 + z2 = 1.

3. At what points is the set defined (in polar coordinates in R2) by

r(l + a cos 6) = 1 a curve? Find a parametrization of the curve.

Figure 4.17
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Figure 4.18

4. Consider the family of cardiods (Figure 4.18)

r = (l+c)_1(l +CCOS0)

(a) Describe the behavior of this family as c ranges between 0 and + oo .

(b) For c = 1, c = 2, calculate the unit tangent vector to the curve as a

function of 6.

5. What is the tangent vector to the curve r = a cos bd ? Graph the curve

for 6 = 1,2, 5,V2.
6. Calculate the tangent lines to the following curves :

(a) f(f)=(e-'cosf, e-'sinf) at (1,0).

(b) f(x) = (x,sin-| at (1,0).(X'Sinx)
(e''7+-rsin')(c) f (f ) = I e', ,

sin f I at (1 ,
1
, 0).

(d) x2+y2 + z2=4a2,ix-a)2 + y2=a2 at (2a, 0, 0).

(e) f it) = it, cos f, sin f) at (0, 1, 0).

(f) f(f)=(f2,l-f2,f) at (1,0,1).
7. Find the tangent line at the origin for these curves.

(a) ex+v-y-\=0

(b) cos xy
=

y + 1

(c) x2 + y3z + sin z = 0 exy2 cos xy =0

(d) exp(sin (xy + z)) = 1 x2 + y2 + z2 = x + y + z

PROBLEMS

1 . A snail deposits calcium at the leading edge of its shell in a direction

which makes a fixed angle with the ray from the snail's center to the leading

edge. Show that this hypothesis explains the spiral form of a snail's shell.

2. Graph the curve r = (1 + d2Y\2 + 62) and compute its tangent

vector.
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3. Graph the curve in R3 given in spherical coordinates by r = <?', 6 = t,

z = e'. Graph the curve on the unit sphere made by the tangent vector of

the given curve.

4.2 Arc Length

Definition 3. Let T be an oriented curve positively parametrized by

f : [a, b~] -> T. Let a < a0 < b0 < b. Define the length of T between f(a0)

and f(b0) to be the least upper bound of all sums

I llfft) -*('-. (4.18)

over all choices of points 1
0 ,

. . .
, tk such that

a0
= t0 < tx < < tk = b0

This definition has this description. Approximate (Figure 4.19) the curve

by a
"

broken line
"

joining a succession of points along T between a0

and b0 . Then the sum of the lengths of the line segments is less than,

and approximates the length of the curve. Now, if the points t, and tt-t

are very close, then the vector f(t,)
- f(tt-x) is approximately equal to

f'O.X'i
- *i-i)- If we replace this in (4.18) we get a sum

El|f(*,)ll('i-'i-i) (4.19)

which is a Riemann sum approximating the integral

/.&0

f l|f'(OII
J
fin

dt (4.20)

t b

Figure 4.19
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Of course, the substitutions taking us from (4.18) to (4.19) admit a small error

term by term but since k may be very large, we have no hold on the error

between (4.18) and (4.19). Nevertheless, we can, by being very careful,

justify that substitution and deduce that the limit of the lengths of the approxi

mating line segment curves is the integral (4.20).

Proposition 3. Let T be a curve parametrized by f : [_a, b~\ -> F. The

length ofT between f(a0) and f(b0) is given by the integral (4.20).

Proof. We will use the fundamental theorem of calculus to show this. Let

sit) be the length of T between f (a0) and f (f). We shall show that s is a differen

tiable function of f, and /(f) = ||f '(f) ||.

Fix f0 > a0 and consider a f > f0 . If S0 is any sum like (4.19) approximating the

length of r between f (a0) and f (f0), then S0 + ||f (f )
- f (fo) II is a sum like (4.19) for

the length between f (a0) and f (f ). Thus

S0+\\f(t)-f(to)\\<s(t)

Taking the least upper bound over all such So ,
we obtain the inequality

5(f0)+||f(f)-f(fo)ll<s(f) (4.21)

Now, suppose S is a sum like (4.19) corresponding to a partition of the interval

[a0 ,
t ]. We may suppose that t0 is one of the points in this partition. For if not,

we can add it to the given partition, and get a still larger sum. Let f0 < fi <

< tk = t be the points of the partition between f0 and f. Then

S = S0+ l!f(f,)-f0,-i)ll
i=i

where So is a sum corresponding to the interval [a0 , t0]. Thus

s<sit0) + 2\\fit>)-Hti-M

^s(t0)+ 2 f' f'O)
"'i-l

dt

<^s(t0) + 2 f ||f '(Oil dt<s(t0) + f
'

||f '(f)|| dt
< = i -Vi Jt0

Since this is true for all such sums S, we have

*0)^^o)+f'l|f'(OII* (4.22)
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From inequalities (4.21) and (4.22), we obtain

||f(f)-f(f0)ll s(t)-s(t0) 1 f
<

, ,

< llf '0)11 dt (4.23)
t-t0 t- to

As t->t0, both the left and right ends converge, since f is differentiable, to

||f'(fo)ll. Thus 5 is differentiable at f0, and s'(t0) = ||f'(f0)!l. Since this is valid

for f0 between a0 and b0 ,
we have the desired conclusion.

Now, if T is a curve parametrized by f : [a, b~\ -> T, we can consider arc

length as a function along T. Precisely, let s(t) be the length of the piece of

T from /(a) to /(f). Then, from the above proposition,

5(f) = J'||f'(0ll dt

Since s'(t) = ||f0)11 > 0, we can parametrize T by arc length, and it induces

the same orientation as the original parametrization. Thus g(s), for every

s is the point on T of distance s from a: g(s(t)) = f(0- If L 's the length of

T from a to b, g: [0, L] -* T parametrizes T. Notice that

f'O) = g'0(0) s'(t)

= g'O(0)-llf'(0ll

so that

8,(!(,,)=If|i=T(,)
Thus g'OO is the unit tangent to T at g(s).

Examples

21. The circle x2 + y2 = a2. Parametrize this circle by

x = a cos 9 y
= a sin 9

Thus

f(9) = (a cos 9, a sin 9)

f'(0) = a(-sin0,cos0)

||f'(0)||=a
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Thus arc length is given by

re
s = s(9) = ad9 = a9

Jo

The parametrization according to arc length is thus given by substitut

ing s = a9.

I s
. s\

x = g(s) = I a cos -

,
a sin

- 1

The unit tangent vector is given by

T(s)= ( -sin-, cos- 1
\ a af

22. Consider the helix of Example 17 given by

f(0 = (a cos t, a sin t, bt)

Then

f'O) = (-a sin f, a cos t, bt)

\\f'(t)\\=(a2 + b2)112

Thus s = s(t) =((a2 + b2)ll2)t, and the arc length parametrization is

g(s) = (a cos

(fl2 +Sb2)X/2 ,
a sin

(<j2 +Sfo2)1/2 ,

(fl2 + fc2)1/2 s)

The tangent vector is

1

T() =
(fl2 + b2)l/i(-a

Sin *> C0S f> fc)

23. The curve of Example 20 has the parametrization

f(0)=^ + ^cos0,-sin0,sin-j
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and we find

||f'(0)||=-i=(3 + 2cos0)i
2sJ2 2

so

5(0) = -^= f (3 + 2 cos <b)1/2 deb

2^2 Jo

and the unit tangent vector is given as

T(0)=(3r!o70)1/2(-sin0'cos0'co4)

Equations ofMotion

Now we shall consider in greater detail the equations of a particle in

motion. Suppose a particle moves through R" along the path given by
x = x(f). The velocity at time t is x'(f), and the acceleration is x"(f). These

are vector-valued functions describing the instantaneous change in the

motion (direction and magnitude) of the particle. The speed of the particle
is the rate at which the distance covered changes, and thus is the time deri

vative, ds/dt, of arc length. As we have seen above, this is the magnitude
of the velocity. Thus

. .
dx .

ds

velocity = speed = =

dt dt

dx

dt
(4.24)

Now, it is instinctive to decompose the acceleration vector into a component

tangent to the curve, and a component orthogonal to the curve. We write

d2x _

acceleration = -=
=

aTi + aN IN

dt2

where T is the tangent vector and N is a unit vector orthogonal to T and lying

in the plane spanned by the velocity and acceleration vectors. N is called

the principal normal to the curve of motion, aT is the tangential acceleration

of the particle, and aN is the normal acceleration. We now show how to
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compute these components of the acceleration. Differentiate the equation

dx ds
= T

dt dt

obtaining

d2x
_

d2s ds dT

l?~dT2 +Jtli (4-25)

Now dT/dt is orthogonal to T, since T is a unit vector. Differentiate

<T, T> = 1

We then have

<T, T> + <T, T'> = 2 <T, T> = 0 (4.26)

Thus we can take for the normal vector the unit vector in the direction dT/dt

dT/dt dT/ds
N = -

= -

(d 27)

(Of course, the differentiation in (4.25) could have been with respect to arc

length as well as time.) Let k = ||dT/ds || . This is called the curvature of the

path of motion. Then dT/ds = jcN, and (4.25) becomes

<fx
_

dh dsdTds

dt2
~

dt2 Ttls It

. . d2x d2s /ds\2
acceleration =

^
= T + k\ \ N
d2^ (ds\:

dr2T+idt)
Thus the tangential acceleration is the rate of change of the speed, and the

normal acceleration is proportional to the curvature, or bending, of the
curve.

d2s /ds\2
aT
=

dT2
a
=

{Tt)K (4-28)
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Examples

24. Suppose a particle moves along the parabola y
= 1 x2

according to these equations

x = t- 1

Then

y
= 2t - t2

x = (t-l,2t-t2)

l-O.Ki-0)

d^X
dt

2 -(0,-2)

Thus the motion of the particle is determined by a downward vertical

acceleration of constant magnitude (perhaps due to gravity) (see

Figure 4.20). The speed of the particle is

dx

It
= (1 + 4(1

- t)2)1/2 (4-29)

Thus we see that the speed is decreasing until time t = 1 (the maxi

mum height of the trajectory), and then increases. The tangent

vector to the path of motion is

T = (1 + 4(1 - OT1/20> 2(1 - 0)

Figure 4.20
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and so

-[l+4(l2-,ff"0(1-"'-1)
The normal vector is the unit vector in this direction :

N = (1 + 4(1 - f)2)"1/2(2(l - t),-l)

Now

(4.30)

dT dT /ds

ds dt/dt (l+4(l-02)2

2

(2(1-0,-1)

N

[1 + 4(1
- 02]3/2

Thus the curvature of the path of motion is

2
K ~

(1 + 4(1
- 02)3/2

And finally

d2s
aT

=

4(1 - 0
_

tds\2 2

""
"

\dt)
K ~

(1 + 4(1
- f)2)1/2dt2 (1 + 4(1

- t2))3/2

The length of the trajectory from x =
- 1 to x = + 1 is

dx

f dt=\ [1 + 4(1 -f)2l1/2
Jo dt Jq

dt

25. (Rotation) (Figure 4.21). Suppose now that a particle rotates

around the unit circle according to the equations

x = cos(e') y
= sin(e')

Then

x = (cos(e'), sin(e'))

dx

It

dht.

dt

= e'( sin(e'), cos(e'))

-j-%
= e'(-sin(e'), cos(e')) - e2'(cos(e'), sin(e'))

(4.31)

(4.32)
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Figure 4.21

Now we already know, just from geometric considerations, what

are the tangent and normal to the path ofmotion:

T = ( - sin(e'), cos(e')) N = - (cos(e'), sin(e'))

Thus (4.31) can be written as

d2x

di
= e'T + e2tN

Thus the normal acceleration is the square of the tangential accelera

tion. From (4.31) we read

ds_
dt~

thus

dx

dt

= e'

s = e'

and the curvature of the unit circle is 1 .

Notice, that any motion on the unit circle
can be written in the form

x = (cos(/(0), sin(/(0)
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Figure 4.22

where f(t) represents arc length as a function of time. Since the curvature

of the unit circle is 1, we obtain for any circular motion

d2s (ds\2^
acceleration = -j T + I I N

dt2 \dt]

The tangential acceleration is the rate of change of speed, and the normal

acceleration is the square of the speed.

26. Now let us consider the motion of an object down a slide (see

Figure 4.22). The slide will be represented by the curve T. Let

z = z(f) = x(f) + z'yO) be the equation of motion of the particle. The

acceleration is z"(t) ; according to Newton's laws

mz" = F

where m is the mass of the object, and F is the sum of the forces

acting on the object. One such force is the force due to gravity

which is mg, where g is the gravitational field. The other force is

the restraining force due to the curve. This force acts in a direction

normal to the curve, and has undetermined magnitude. (That is, its

magnitude is determined only by the object.) Let us call this force

<j>N, where <h is a scalar and N is the normal to the curve. Thus we

have

mz" = mg + <j>N
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Now, since we know the path of motion, we need only determine the

tangential acceleration aT . By Equation (4.28), we have

dh

dt
2
=

aT
= <z", T> = <flf, T> (4.33)

where T is the tangent of the curve. If we consider the curve as

parametrized by arc length: z=f(s) is the equation of the curve,

then the tangent vector is f'(s). Then Equation (4.33) becomes

dh

dt
2
= <9, f(s)>

and the speed can be found as the solution to this differential equation
with initial conditions s(0) = s'(0) = 0.

For specific examples, let us first consider the curve to be a straight
line (Figure 4.23) with equation

z(s) = i + s0

where 0 = a + ib is a unit vector in the third quadrant (b > 0). Then

Tit) = o is constant, and the force due to gravity is ig. The speed

Figure 4.23
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Figure 4.24

is thus found as the solution of the differential equation

d2s

2
= {-ig,a + ib} = -gb

s(0) = s'(0) = 0

Thus s(t) = (gbt2)/2 and the equation ofmotion is

z = Z(t) = i - (\gbt2)^

27. Suppose now the curve is a semicircle (Figure 4.24)

z(s) = sin s + / cos s

Then

T(s) = cos s i sin s

and the speed is the solution of the differential equation

d2s
.

~2
=

\ ig, cos 5 i sin 5> = g sm 5

s(0) = s'(0) = 0

Rotating Plates

28. We can describe the motion of a rotating flat circular plate by
referring to the angle as a function of time. Let a line through the

center of the plate be chosen at time t = 0 and let 0(f) be the angle
this line makes at time t with its original position. Then a point at
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z0 at time f = 0 follows the path of motion

z = z0em,)

Its velocity is iz09'e'm, so its speed is |zo|0'. The acceleration of

the point is found by differentiating further :

z"(0 = iz0 0V<" - z0(9')2eie^ (4.34)

Thus the tangential acceleration is |zo|0" and the radial acceleration

is z0(9')2.
If there is an object ofmass m on the plate, a force mz"(t) is required

so that the object will follow the motion of the plate. Friction may

provide this force. Notice that the central component of this force

is zo(0')2, so even if there is no angular acceleration, friction must

do its job. The further the object is from the center, or the faster the

plate spins, the greater the force required. It is this principle which

explains the centrifuge, which settles precipitates in solution by

spinning the fluid.

29. Suppose now we have a curved circular plate spinning at

constant angular velocity, and there is a ball of mass m in the plate

(Figure 4.25). Assuming there is no friction, we can describe the

motion of the ball in terms of the initial data.

Let us use spherical coordinates r, 0, z in R3, so that the plate is

given by the equation z = f(r). In Figure 4.25 we depict a planar
section of the plate. Let

r = r(t) 9 = 0(f) z = z(t)

be the equations ofmotion of the ball, and let a be the angular velocity
of the plate. Since there is no friction, the ball rotates as does the

Figure 4.25
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plate, then 0 = 0(0 = a'- Since the ball is constrained to lie on the

plate we must have z(f) = /(r(0), for all t. Thus we have

x(t) = (r(t)e"",f(r(t)))

as the equation of motion, and we must find, using Newton's laws,

the function r(t). Now the acceleration is

x" = ((r" - a2r + 2ir')ei, f'(r')2 + f'r") (4.35)

Letting g be the gravitational field, g = -(0, g) we have a force

mg due to gravity. There is another force, that which restrains the

motion to the profile of the plate. This acts in a direction normal

to the plate and has undetermined magnitude. Let cbN denote this

force. There is a third force acting on the ball, due to the rotation

of plate and the direction of this force is tangential to the circle on

which the ball lies. We shall denote this force by C. Then, by

Newton's laws

<bN + C + mg
= mx" (4.36)

Let us equate coordinates. Now, since N is normal to the surface,

it lies in the plane through the z axis and the ball (the rz plane) and is

normal to the curve z = f(r). Thus N = (nxe"*', n2) and

-=-(f(r)y1
i

(since n2/nx is the slope of the line perpendicular to the curve z =/(r)).
Since C is tangent to the circle on which the ball lies, C = (ceix', 0).
The magnitude c of C is yet to be determined. Finally, g is vertical,

so g
= (0, g). Using (4.35) and substituting these values in (4.36)

we have these three equations as a result:

(bnx = m(r" a2r)

c = 2ar'm

-mg + <bn2=m(f"(r')2+f'r")

Thus, eliminating <b from the first and last equations, we find that

r = r(t) is a solution of the differential equation

(1 + f(r)2)r" = a2r - f(r)f"(r)(r')2 - f'(r)g (4.37)
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For what kind of a plate will it be true that the ball will not move

up or down, once released no matter what its position? We must

have r' = r" = 0, so (4.37) becomes

<x2r=f'(r)g

Solving, we obtain /(r) = (a2/2g)r2. Thus if the plate is a paraboloid

of revolution, we can rotate it at a suitable angular velocity so that it

will have this property.

30. Suppose we are given a field of force in space, and the initial

position and velocity of a particle. Then we can find the path of

motion of that particle. For example, suppose the force field is

F(x) = x, and the initial position and velocity of the particle are

x0 , v0 . Then the path of motion is given by the solution of this

differential equation:

/"(0 = -At)

/(0) = x0 /'(0) = v0

We know the solution; it is

f(t) = cos t x0 + sin f v0

Thus the path of the particle is an ellipse in the plane determined by

the vectors x0 , v0 . If x0 ,
v0 are orthogonal the major and minor

axis have lengths |x0|, \v0\ (see Figure 4.26). The velocity vector is

/'(t) = -sin f x0 + cos t v0

and the speed is the length of this vector.

X"

Figure 4.26
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3 1 . Suppose we have a force field in the plane which is of the same

magnitude as the position vector, but orthogonal to it. Using

complex variables on the plane, the force field is given by

F(z) = iz or iz

Let us assume it is the former. Suppose a particle has initial position

z0 and velocity v0 . Then, the motion is found by solving

f'V) = i/(0 /(0) = zo f(P) = v0

The solution is of the form

f(t) = Aea' + Be-'"

where a = y/i = (1 + i)/~j2. We solve for A, B by substituting the

initial conditions,

/(0) = z0
= A + B

f'(0) = v0
= a(A - B)

Thus

f{t) =
<LZi5> e< +

z + fttP
e-

Suppose z0
= 1

, i'0
= 0. Then

f(t) = 2-(e*< + e-<)

For large positive t, the second term is negligible, and the curve is very close to

z = fe"'

which we know is an outgoing counterclockwise spiral. For large negative
t, the second term e~"' is dominant and that gives an incoming clockwise

spiral. Thus the particle comes spiraling in from outer space and then at

time t = 0 pauses for a breath and then goes racing back from whence it

came. (See Figure 4.27.)
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Figure 4.27

EXERCISES

8. Find arc length as a function of the parameter for each of the following

curves.

(a) r(l + a cos 6) = 1

(b) r = 1 + 2 cos 9

(c) The curves in Exercises 6(a)(b)(d)(f), and 7(a).

9. Parametrize these curves according to arc length, and find the curvature

and normal.

(a) x2 + y2 = 1
,
x2 + z2 = 1 . (d) The curve ofExample 22.

(b) The curves in Exercise 8(a)(b). (e) The curve of Example 23.

(c) The curve in Exercise 6(a)(e).

10. Find the normal and tangential accelerations for these planar

motions:

(a) zit) = exp(l - i)t (c) z(t) = (1 + 2 cos t)e"

(b) x(f) = f^,y(f)=f3 (d) zit) = t + e1'

1 1 . Find the normal and tangential accelerations of these motions in

space :

(a) x(f) = (f, sin f, sin t) (c) x(f) = f(sin t, cos f, 1)

(b) x(t) = (e', e~',t2)
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PROBLEMS

4. The graph of a differentiable function y =/(x) is a curve in the plane.

Find the curvature as a function of x.

5. The graph of a differentiable Revalued function y =/(x), z = gix) is a

curve in space. Find its curvature as a function of x.

6. A skier has to negotiate a series of hills whose profile is the curve

y
= e'x cos x (Figure 4.28). There are three forces acting on the skier:

that due to gravity, the restraining force of the hills, and a force due to

friction which is proportional to his velocity. Find the differential equation

describing his motion.

7. I shot an arrow into the sky at an initial velocity of 80 feet/second and

at an angle of tt/3 with the horizontal. The gravitational field is vertical

downward with a magnitude of 32 feet/second2 The air drags the arrow

with a force of 0.05 times its velocity. Find the equation of motion, and

the curvature of the curve of motion (the arrow weighs one pound).
8. In Example 26, let k be the curvature of the slide. Show that the

magnitude of the constraining force due to the slide is/= ids/dt)2K <g, N>.

Find the differential equations which determine x(f ), yit). Write out these

equations when the slide is the curve y = cos x.

9. Suppose we have a field of force in space given by F(x, y, z) =

(y, x, z). Find the path of motion of a particle which at time f = 0 is at

(1, 1, 1) with velocity (-1, -1, 1).

Figure 4.28
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Figure 4.29

10. Suppose a race track is formed by rotating the curve (x l)2 + z2 = l,

1 <z<0 around the z axis. (The surface is, in cylindrical coordinates,

(r l)2 + z' = 1, Figure 4.29). A cyclist cycling around the track tends to

ride up the bank as he goes faster. Explain that.

11. Water is at rest in a very large sink when a stopper is removed in the

bottom center of the sink. An idealization of the ensuing motion is as

follows. The water accelerates toward the hole. The forces acting on each

particle of water are due to gravity and the mass of the fluid itself. The

field due to the former is (0, 0, g) and the field due to the latter operates

as if the particle were on an inclined plane with vertex at the hole. Find

the resultant force field. Find the differential equation giving the rate of

rotation around the hole.

12. We must send a ball of unit mass over a hill whose profile is the curve

y=exp( x2) from x = 1 to x = l. What minimum initial speed is

required to ensure that the ball maneuvers this hill?

13. Suppose we are given in space a force field which is directed toward

the origin and so that its component in the z direction is always 1. Find

the path of motion of a particle which is at rest at time t = 0 at the point

(1,1,1).

4.3 Local Geometry of Curves

We have seen, from the physical problems discussed, that the higher-order

derivatives of a function parametrizing a curve have some significance. In

this section we will discuss the higher-order invariants of a curve ; that is, those

concepts which depend only on the geometry and not on the particular

parametrization.
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Let r be a curve in R". For purposes of simplicity, we shall take T to be

parametrized by arc length by x = x{s). If T is twice differentiable, the tangent
vector TOO = x'00 is a differentiable function. Since (T(s), (Ts)> = 1 for

all s, we obtain through differentiation 2(T(s), T'(s)} = 0. Thus at any

point T' is orthogonal to T.

Definition 4. The normal line to T at x0
= x(s0) is the line through x0

and parallel to the vector T'(j0). The osculating (or tangent) plane to T at

x0 is the plane spanned by, the tangent and normal lines.

The name osculating plane is quite descriptive. This plane osculates in

the following sense.

Proposition 4. Let x0,xx, x2 be three points on the curve Y. If they are

noncollinear, they determine a plane. This plane has the osculating plane as

limiting position, as xx, x2 tend to x0 .

Proof. In order to determine the limiting position of the plane through x0 , Xi, x2

it suffices to find two independent vectors which are limits of vectors on the variable

plane. The easiest way to do this is to refer to the Taylor expansion of the arc

length parametrization. Suppose/: (a, b)^T parametrizes T with respect to arc

length, and/(0) = x0 . For simplicity wemay assume x0 is the origin, 0. According
to Theorem 4. 1 we can write

fis) =W)s + T'i0)s2 + eis)s2 (4.38)

where lim eis) = 0.
5-.0

Let Xl=f(si), X2=fis2). Since x0=/(0)=0, the plane tt(si,s2) through
x0 , xi, x2 is the plane spanned by the vectors /OO, /(s2). Now, for each su si TX?,).
is on -rrisi,s2). Now

Ji-1/(*i) = 7X0) + T\0)si + eis)si2

Letting st -^0, that says that lim *rV00 = 7"(0) is on the limiting plane. Now, to

find another vector on the limiting plane, we take an appropriate combination of

f(si),f(s2) so as to dispose of the T(0)s term in the Taylor expansion (4.38). Thus, we
consider

s2 f(si) -

sif(s2) = T'(0)is2 si2 -

Sis22) + eisi)s2 Si2 -

eis2)sis22 (4.39)

We are interested in finding some vector of this form which has a limit as su s2

tend to zero. Let us take the special case Si = 2s2 = 2s; (4.39) becomes

7"(0) 2s3 + (25) 4s3 -

Eis) 2s3 = 2s3iT'iO) + 2ei2s) - sis))
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Thus T'iO) + 2ei2s
-

eis)) is on the plane spanned by fis) and /(2s). Letting s- 0,

we see that T'iO) is on the limiting plane. Thus the limiting plane is indeed spanned

by 7X0) and 7"(0).

A few remarks are in order. If T'(0) = 0, then the osculating plane is not

defined. In particular, if the curve T is a straight line, then the tangent

vector is constant, and there is no plane which is closest to Y, so a straight
line has no osculating plane anywhere. Conversely, if T and T' are always
collinear along Y, then T must be a straight line (Problem 14). Now, in the

case where T' and T are collinear at the point in question, but not always

collinear, it may happen that the plane through x0, x^ x2 of Proposition 3

has a limiting position as xx, x2 -* x0 ,
and it may not (see Problem 14). In

the former case we shall consider the normal plane as defined by the limiting

position, and in the latter case, we shall say that the normal plane does not

exist. Generally speaking, such cases are pathological, and we shall exclude

them from further discussion.

Observe that for curves in R2, the osculating plane is (of course) just R2.

For curves Y in R2, we define the normal vector to Y at x0 as that unit vector

N on the normal line so that the sense of rotation T -> N is counterclockwise

(see Figure 4.30). Then the normal vector N varies continuously along the

curve and the vectors (T, N) will form a
"

natural
"

orthonormal basis for

R2 along the curve (called the moving frame). In R" for n > 2 there is

no uniquely determined choice for a normal vector, and thus we leave the

choice undetermined save that it should vary continuously along Y.

Definition 5. Let Y be a twice differentiable oriented curve in R". The

normal vector to Y is a choice of unit vector on the normal line which varies

Figure 4.30
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continuously along Y. The curvature of Y is the scalar function of s, k(s),
such that T'(s) = k(s)N(s) along Y.

Examples

32. The circle in R2 (Figure 4.31)

x(s) = a cos
-

,
a sin -I

\ a a)

I s s\
T(s) = sin -

,
cos

-

\ a af

The normal is orthogonal to and counterclockwise from T so

/ s s\

N(s) = I cos -

,
sin -

)
\ a a)

Then T'(s) = [cos(s/a), sin(s/a)1/a = N(s)/a, so the curvature of

the circle of radius a is a"1.

33. The spiral r = ee (in polar coordinates) (Figure 4.32). The

parametrization is

z = z(0) = eVa = e(1
+ i)(,

z'(0) = (l + Oe(1+i)e

Figure 4.31
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N()

T()

t/4

SO

Figure 4.32

ds ee

Te -*m-Tl
Thus the tangent vector is

1 + i

T(9)- e>8 _ gi(
+ */4)

The normal is N(0) = e'<9+ 3*/4>. Now,

dl = dldl = iew+lvJ2e-e = J2e~V<9+3*'
ds d0 ds

Thus the curvature is given by k(9) = yJ2e~e.

:/4)

Here is a proposition which gives an interpretation of curvature in the

plane and sometimes makes the curvature easily computable. It says that
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the curvature is the rate of rotation of the moving frame with respect to arc

length.

Proposition 5. Let Y be a given plane curve. The curvature ofY is the rate

of rotation of the tangent with respect to arc length, that is,

k(s) =
js

(arg TOO)

Proof. Let T(s) = r(s)e"(,) in polar coordinates. Since T
'

is a unit vector,

r(s) = 1. Then NO) = ?'<"< +*'2>, and

JPT1 J

= _(gI(J)\
_ iQ'eW __ Q'eH6)+nl2

ds ds

Thus k(s) = 0'(s).

Examples

34. The helix

f(0 = (a cos t, a sin t, bt)

has arc length s = (a2 + b2)ll2t, and tangent vector

TO) = (a2 + b2y1/2(-a sin(a2 + b2)~1/2s, a cos(a2 + b2y1/2s, b)

Thus

T(s) = (a2 + b2)~1(-a cos(a2 + b2y1/2s, -a sin(a2 + b2y1/2s, 0)

Thus N = (-cos t, sin t, 0) and

a

k =

a' + b2

Observe that the normal line to the helix always points toward the

axis of the helix.

35. Consider the curve (Figure 4.33)

x(0 = (cos t, sin t, sin 30
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Figure 4.33

Then

x'O) = (-sin t, cos t, cos 3f)

ds
- = ||x'(OI| = (1 + 9 cos2 3f)1/2

T(f) = (1 + 9 cos2 30"1/2(-sin t, cos f, cos 3f)

Computing

dT_dTaj_
ds dt ds

= -(1 + 9 cos2 3f)"2(10 cos t, sin 9f,3 cos 3f cos 2f + sin 3f sin2f)

and the curvature is the length of this vector.

Now, let us make one final remark about a curve in the plane. It is

completely determined, up to Euclidean motions, by its curvature. Thus, for

example, the only curve of constant curvature is a circle. This is, as we

shall see, an easy consequence of Picard's existence theorem for differential

equations.

Theorem 4.1. Let k(s) be a continuous function ofs in some interval I about

the origin. There is a curve Y whose curvature function is k(s). If Y' is

another curveparametrized by arc length on the interval I which has the same

curvature, then a Euclidean motion willmove Y' onto Y.
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Proof. First we shall verify the uniqueness. Let r be a curve with the given

curvature. Let x = x(s) be its arc length parametrization. We may apply a

Euclidean motion (translation and rotation) so that x(0) is the origin and T(0) is

the vector Ei. Now we show there is only one curve with these properties. The

proof depends on the observation that the normal is rigidly attached to the tangent;

that is, its motion along the curve is completely determined by the tangent. In

fact, writing T(s)=ems\ we have N(i) =e'<8(s+"'2). Thus N' = /e'e<9+"/2) =

0V<9+") = T. Now the system of differential equations

T(s) = k(s)N(s) N(s) = -k(s)T(s) (4.40)

has only one solution subject to the initial conditions T(0) = Ei, N(0) = E2 . Thus

T is unique, so

x(s) = f T(<r) da
Jo

is also uniquely determined by the given conditions. Thus there is only one r

with the given curvature.

We now turn to the question of the existence of a plane curve with given curva

ture. Again, by the fundamental theorem on differential equations, there exists a

solution of the system (4.40) subject to the initial conditions T(0) = Ei, N(0) = E2 .

If (T(s), N(s)) is the solution, then

x = x(s) = T(ct) da
'o

defines a plane curve r. We must show that j is arc length along r. For then

x"(s) = k(s)N(s), so k(s) is the curvature. To show that 5 is arc length we must

show that x'(s) = T(s) is a unit vector.

Now, let f(s) = -

iN(s), N(s) =
-

iT(s). Then

f(0) =
- iE2 = Ei N(0) = 1E1 = E2

f '(s) = -iN'(j) = -K-k(s)T(s)) = kCs)N(s)

N'(s) = f'T'Cr) = i/c(i)N(j) =-k(s)T(s)

Thus T, N also solve the given initial value problem. By the uniqueness, T = T,

N = N. Thus N = /T, soN T. It follows that

-

<T(j), T(s)} = 2<T(i), T'(*)> = 2k(sKT(s), N(s)> = 0
as

so T(s) has constant length. Since T(0) =Ei, it is a unit vector.
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PROBLEMS

14. Show that if T : x = x(s) is a curve in R3 and T(s), T(s) are everywhere

collinear, then T is a straight line.

15. (a) Let r be given by

x = (x, x3, x3)

Show that T(0), T'(0) are collinear, but T has an osculating plane at the

origin.

(b) Let

,
. \x3 ifx<0

*W =

(o ifx>0

Show that the curve V given by

x = (x, -g(x),g(-x))

does not have an osculating plane at the origin.

16. Let r be a curve on the sphere x2 + y2 + z2 = 1. Show that r is

an arc of a great (i.e., diametric) circle if and only if the normal to T is

always collinear with the position vector.

17. Show that a curve is a straight line if all its tangents are parallel.

18. Three noncollinear points in R2 determine a circle. If, for the

purposes of this exercise, we consider a straight line as a circle (of infinite

radius) we may assert that any three points determine a circle. Suppose T

is a curve in R
2

through p0 . Following the kind of reasoning on pages 324

and 325, define the osculating circle to T at p0 and find its equation in terms

of a parametrization of r.

19. The radius of the osculating circle is called the radius of curvature.

Show that it is k~\

20. If the osculating circle to F is always a straight line, deduce that T is

a straight line.

21. Find the osculating circle at a general point of an ellipse.

22. Find the osculating circle at a general point of a parabola.

23. Show that if the osculating circle to a curve is always a circle of

radius R, the curve is a circle of radius R.

24. Suppose T is given parametrically by arc length by x = x(s), y = y(s).

Show that the curvature is given by

k = x'y"
- y'x" = [{x")2 + (y")2]"2

25. Show that a curve in the plane of constant curvature is a circle.
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Figure 4.34

26. Suppose V: x=t(s) is a curve with this property: for every /, the

distance between f (s) and f (s + t) is independent of s. Show that T is a

circle.

27. Suppose f is a nonnegative function of a real variable with the

property that the area under the graph of /between 0 and x is proportional
to the arc length of that graph. Find the curve.

28. Find the curve V with the property that at any point p the angle
between the tangent to r at p and the tangent to the ellipse

E: x2 + 2y2 = l

at the point of intersection of E with the ray through p is constant.

29. Let T: x = t(s) be a planar curve. Suppose we have a string along
T with one end point at x0 . If we unwind the string tautly and without

stretching, the end point will follow a curve E, called an evolute of T

(Figure 4.34). If 5 measures arc length from x = f(0), the curve E is

parametrized by x = f (s) + sf'(s). Find the evolutes to (a) the unit circle

(b) the spiral z = ell + n', (c) the parabola y = x2, (d) an ellipse.
30. If we rotate a cylinder of water about its axis, the surface of the water

does not remain a plane. What shape does it take and why ?
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4.4 Curves in Space

Suppose T is a curve in space. Let x0 e I\ and suppose T and N are the

tangent and normal to T at x0 . A third unit vector orthogonal to both T

and N will serve to provide a natural frame within which to discuss the

behavior of the curve near x0 . This vector B, called the binormal to the

curve is chosen so that the triple T -> N -> B forms a right-handed frame (see

Figure 4.35). In this section we shall use this frame, called the moving
trihedron along the curve, much as we used the tangent and normal to study

plane curves.

The three vectors T, N, B determine three planes : the tangent {or osculating)

plane is spanned by T and N, the normal plane is spanned by N and B, and

the plane spanned by T and B is called the rectifying plane. Now the cur

vature of the curve is, as we have seen, the rate of rotation, with respect to

arc length, of the tangent line in the osculating plane. In three dimensions

there is another important intrinsic function on the curve. Since B is a

unit vector on Y, <B', B> = 0. Thus B' lies in the osculating plane. Since

<B, T> = 0, we have

<B', T> + <B, T'> = 0

Since T" = kN, <B, T"> = k <B, N> = 0, thus also <B\ T> = 0 so B' must

be collinear with N.

Figure 4.35



360 4 Curves

Definition 6. The torsion i of a curve T is that function such that

B' = - tN.

The torsion measures the torque, that is, the twisting of the osculating

plane about the tangent line. That is, since the binormal is orthogonal to

the osculating plane, the change in the binormal reflects adequately the

change in the osculating plane. The Taylor development of the binormal

in a neighborhood of a point x0 = x(0) is

B(s) = B(0)
-

t(0)N(0> + b(s)

Thus (considering only first-order terms) the binormal at x(s) has moved

t(0) s toward the normal. Thus if t(0) > 0, the osculating plane has

twisted in the right-handed sense about the tangent line. At a point where

t = 0, the osculating plane pauses ; it may or may not change its direction

of rotation about the tangent line. If x = 0, the osculating plane remains

fixed along the curve; it follows that the curve lies on this plane.

Proposition 6. Let F be a curve in R3. T is a plane curve if and only if
t = 0 along T.

Proof. If T is a plane curve, let n be the plane containing T. The tangent

and normal to T always lie on n, so the binormal is always the unit vector orthogonal
to n. Thus the binormal is constant, so B' = 0, thus t = 0.

On the other hand, suppose r = 0. Let x = x(s) be the parametrization of T by
arc length. Since t = 0, B' = 0, so B is constant along T. If for some s0 , x(so)is
not on the plane through x(0) and orthogonal to B, then

<xC$o)-x(0),B>^0 (4.41)

Let 6(s) be the function <x(s) - x(0), B>. Then 6'(s) = <T(s), B> which is zero

since B = B(j) for all s and is orthogonal to T(s). Thus d(s) is constant. Since

6(0) = 0, 6(s0) = 0 also contradicting (4.41).

The fundamental formulas of space curve theory are those relating 1",

N', B' with T, N, B. We can now easily derive them.

Theorem 4.2. (Frenet-Serret Formula)

T'= kN

N'=-kT + tB

B' = - tN
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Proof. The first and the third are just the definitions of k, t, respectively. Since

N is a unit vector, <N', N> = 0, so N' lies in the rectifying plane. Write

N = <xT + ,8b; we must verify a = -k, j8 = t. But that follows from <N, T> = 0,

<N, B> = 0. For

a = <N', T> = -<N, T'> = -k

p = <N', B> = - <N, B'> = -(-T) = t

Examples

36. The circular helix:

x(t) = (a cos t, a sin t, bt)

We have already computed that s = ct, where c = (a2 + b2)112, and

T(,) = l(-asinQ,flCos(^)
kN(s) = -5

I a cosl-J, a sinl-l, 01

thus

K = ^N=-(cosQ,sing),o)
B = T x N = - I -tsinl-J, b cosl-J, -a J

_TN = B' = iI(-bcosQ,^sing),0)
thus t = b/c2.

37. Let C be a curve in the xy plane, and let T be a curve of constant

slope lying over the curve C (see Figure 4.36). Thus if T is the tangent

to T, <T, E3> is constant. Let b be that constant. Then T has the

parametrization

x(0 = WO, y(t), 6(0)

where (x(t), y(t)) parametrizes C. We may assume the parameter
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Figure 4.36

is arc length along C. Then

x' = (x',y',b)

so

ds
- = ||x'|| = x')2 + {y'f + b2)1'2 = (1 + b2)1'2

Thus s = (1 + b2)1/2t and the tangent to T is

T =

(1 + ^1,2
(*'. /.

Thus

kN = T' =

(TTW7l(^/'.0)

Now if kc is the curvature of C, since (*', /) is its tangent vector,

( /, x') is its normal vector, so

(x\y")=Kc(-y',x')
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Thus

kN=
Kq

{1 + b2yl2(-y',x',o)

so

K =

{1+Cb2)m
N = (-/,x',0)

Then

B = T x N =

(1 + ^2)i/2 i-bx',- by', (x')2 + (y'f)

=

(l + b2)i/2(-bx',-by',l)

Differentiating,

1 fojc
~TN = B' =

(i + b2Y'2
{-bx"> -by"> 0) =

(i + b4>2 {~y'' x'' 0)

Thus

bKc

(1 + b2)1'2

Local Behavior of a Curve

We shall now make a close study of the local behavior of a curve relative

to the moving trihedron. Let T be a sufficiently differentiate curve, par

ametrized by arc length by x = x(s), a < s < a. We may perform a

Euclidean transformation so that x(0) = 0, T(0) = E^ N(0) = E2 , B(0) = E3 .

Expanding \(s) in a Taylor series, we obtain

s2 s3
x(s) = x(0) + x'(0)s + x"(0)

-

+ x'"(0)
- + e(s3) (4.42)

2 6

Now

x' = T, x" = kN, x* = jc'N + kN' = k'N + k(-kT + tB)
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Evaluating these at zero and substituting into (4.42), we obtain

x(s) = sEi +
- s2E2 + -

E2
- Ei+. E3 + e(s3)

2ooo

In coordinates,

x = s

6
+ s(s3)

y
= 'i s2 + t s3 + (53)

L o

z = s3 + e(53)
6

Thus for small values of s, the given curve looks like the cubic curve given

by the equations

y
=

r

KX ,
- 4 X ,

z = x3 zz '3

3 K

Figure 4.37 is a picture of this curve for jc> 0, x > 0. Notice that, so long

as kx # 0 the curve always passes through its osculating and normal planes,
but lies on one side of its rectifying plane.

Figure 4.37
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Now, just as the curvature determines plane curves up to a Euclidean

motion, space curves are so determined by the curvature and torsion. The

proof of this fact is by the same kind of application of Picard's existence

and uniqueness theorem as we used in the case of the plane. We shall leave

the verification to the interested reader.

Theorem 4.3 Given continuous functions f, g defined in an interval I there

is a space curve Y : x = \(s) given parametrically by arc length in some sub-

interval of I such that

K(s)=f(s) x(s) = g(s)

Y is unique up to Euclidean motions in R3.

PROBLEMS

31. Show that a curve in R3 is a plane curve if all its tangent planes pass

through a given point.

32. Show that a curve in R3 is a plane curve if its binormal is constant.

33. Let T be a curve in the plane and let y be the intersection of the cylinder

over T with the cone x2 + y2 = z, z > 0. Find the curvature of T in terms

of that of y. What is the torsion of y?
34. Let T be a curve in space, and y its projection onto the xy plane.

What is the relation between the curvature and torsion of T and the curva

ture of y?
35. Suppose that T is the intersection of the surface z = y2 in R3, with the

plane ax + by = 0. What is the curvature of r at the origin ?

36. Let T be the intersection of the surface z = x2 + 2y2 with the plane

ax + by = 0. What are the curvature and torsion of T ?

37. Let T be given in R3 by x = x(s). Let S be the surface swept out by

the tangent lines to T. Show that a curve on which is everywhere ortho

gonal to those tangent lines is given by

x = x(s) + (c s)T(s) for some constant c

4.5 Varying a Curve in the Plane

A family of curves in the plane is a collection of curves {Yc}, as c range

through some set, usually of n-tuples of numbers. It is to be understood that

the curves of the family vary smoothly ; although we shall not make this idea

precise. For example, if x(t, c) are functions defined for real t and c lying
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in some set S, then the equations

x = x(t, c), y = y(t, c) (4.43)

determine a family of curves: each curve in the family is found by fixing a

value of c. We refer to Equations (4.43) as the explicit form of the family.
More often, a curve is determined by a relation between x, y and a family
could be given by an equation

F(x, y,c) = 0 (4.44)

which, for fixed c gives the relation determining a curve. We refer to (4.44)
as the implicit form of the family. Since it does not refer to any particular

parametrization of the individual members, this form is particularly useful.

The "constant" c which picks out the member of the family usually ranges

through some set in R" : in which case we refer to the family ((4.43), (4.44))
as an n-parameter family of curves.

Examples

38. A straight line in the plane is given by the equation

ax + by + c = 0 (4.45)

Thus the set of all straight lines is given by (4.45) implicitly as a

3-parameter family of curves. If instead, we write down the slope-

intercept form of a straight line,

y
= mx + b (4.46)

then we exhibit this family explicitly as a 2-parameter family of curves.

39. Let

x = x(t) y
= y(t)

be the equation of a curve Y in the plane, and consider the family of

tangent lines to Y. The equation of the line tangent to Y at (x(t),
y(t)) is

y'(t)
y
=^ +

x\t)(X
~

X(0) (4"47)
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This is the explicit form then of a 1 -parameter family. (The parameter

is*.)

40. Consider the case where Y is the circle

x = cos t y
= sin t

The family of tangent lines to Y is given by the equation

cos t

y
= sin t (x cos 0 (4.48)

sin t

This simplifies to

y
= x cot t + esc t

We can make this appear even more palatable by taking cot t

as the parameter of the family. Letting c = - cot t
,
we find esc t =

-(1 + c2)1/2/c, so (4.48) becomes

XC
(i + c2yi2

(4.49)

a 1 -parameter family of lines.

41. Suppose a hoop is rolling along a horizontal line (see Figure

4.38). This collection of positions of the hoop forms a 1-parameter

family of circles where the point of tangency with the horizontal (the

Figure 4.38
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Figure 4.39

x axis) is taken to be the parameter. The implicit equation for the

family is thus

(x-c)2 + (y-l)2 = l

42. The family of circles tangent to both the x axis and the y axis

is a 1 -parameter family of curves (Figure 4.39). We take for the

parameter the point of tangency of the curve with the x axis. If r

is the radius of the cth circle, then the equation of the family is clearly

(x - c)2 + (y- r)2 = r2

It is easily seen that r = c; this follows from elementary geometric
considerations. Thus the family is implicitly described by this

equation

(x - c)2 + (y- c)2 = c2 (4.50)

43. The family of circles of radius 1 tangent to the parabola y = x2

(Figure 4.40). We can take as the parameter the x coordinate c of

the points of tangency. The center of the circle is on the line per

pendicular to the parabola at (c, c2). Thus if (r, s) are the coordinates
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of the center of the cth circle, we have

s-c2 = -h(r-c)

(r
- c)2 + (s- c2)2 = 1

These equations have the solution

2c
_

2
1

T C +

(l+4c2)1/2
S~C

(1+4C2)1'2

Thus the implicit equation for this family of circles is

(x-c-(TT^)2 + (^c2 + (JTi?F)2 = 1

44. Let T be a curve in the plane. We seek the family of tangents
to T. If T is given as a function of arc length by x = \(s), then the

lines

g(w) = x(s) + uT(s) (4.51)

form the family of tangents to Y with s as parameter. Suppose now

that y is a curve which is orthogonal to this family at every point.
If h(s) is the point of intersection of y with the particular tangent line

Figure 4.40
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(4.51) at x(s), then y is parametrized by x = h(s). h(s) is then of the

form (4.51) with a particular choice u(s) of u. Writing then h(s) =

x(s) + u(s)T(s), and differentiating, we obtain

h'(s) = (1 - u'(s))T(s) + u(s)T(s)

Since h'(s) is tangent to y and thus, by assumption, orthogonal to T,

we must have 1 u'(s) = 0. Thus u(s) = s + c. So the family of

curves orthogonal to the tangent lines to Y is given by

x = x(s) + (s+ c)T(j) (4.52)

The family of curves orthogonal to the tangents to the circle z = e"

is given by

x = eis + i(s + c)eis = [1 + i(s + c)]e's

These are just the evolutes of the circle.

The Differential Equation of a Family

A differential equation

V' = Fix, y)

determines a 1 -parameter family of curves, if the function Fis decent enough.
For, under such conditions, for each c there is a unique solution of the initial

value problem

y' = F(x, y) y(x0) = c

The solution can be written y =f(x, c), which can be considered as either

the explicit, or implicit form of the family. Now, it is usually true that a

1 -parameter family of curves is the family of solutions of some differential

equation, and we would often like to find that differential equation.

Suppose, for example, that y = f(x, c) is the equation of a given 1-parameter
family. If y

= y(x) is one particular curve (i.e., y(x) =/(*, c0) for some

fixed c0), then these two equations must hold

y
= f(x,c) y' = dJ-(x,c)
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for some value of c (i.e., c = c0). It may be possible to eliminate the param

eter c from these two equations, thus obtaining a relation between x, y, y'
which must be satisfied; this is the differential equation of the family. For it is

a differential equation which must be valid for each member of the family,
and this is a differential equation which determines the family.
More generally, suppose the family is given implicitly by

F(x, y,c) = 0

If x = x(t), y = y(t) parametrizes one of the curves in the family, then there

is a c such that

F(x(t), y(t), c) = 0 (4.53)

identically in t. Differentiating now with respect to t, we have

dF dF

(x, y, c)x' + (x, y, c)y' = 0 (4.54)
ox oy

If we can eliminate c from Equations (4.53) and (4.54), the result will be a

relation between x, y, x', y' which must be satisfied for each curve in the

family and thus is the differential equation of the family. Of course, if x

is the parameter along the curve, and y
= y(x) is its equation, (4.54) becomes

8l(x,y,c) + d-f(x,y,c)^ = 0 (4.55)
ox oy dx

Examples

45. Consider the family of parabolas (Figure 4.41)

y2 - ex = 0

Differentiating with respect to x (considering y as a function of x),

2yy'
- c = 0

Thus the differential equation of the family is

y2 - lyy'x = 0
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Figure 4.41

or, excluding the curve y = 0,

y
- 2y'x = 0

46. The family y
= cex is given by the differential equation y' = y

(as we already know). The family y
= ecx is given by the differential

equation

y
= exp(- x j

47. (Clairaut's Equation). Let y = f(x) give a curve in the plane,
and consider the family of lines tangent to that curve. That family
is given implicitly (taking the x coordinate of the point of tangency as

the parameter) by this equation,

y=f(x) + f'(c)(x-c) (4.56)

Now, upon differentiation we find

/ =/'(c) (4.57)
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To say that we can eliminate c from the pair of Equations (4.56) and

(4.57) amounts to saying that we can solve (4.57) for c as a function of

y'. Then, upon eliminating we obtain as differential equation, the

equation

y
= y'x + h{y') (4.58)

where h(y') represents the expression f(c) f'(c)c, considered as a

function of y'.

Thus Equation (4.58), known as Clairauts' equation, is the general form

of the differential equation of a family of lines tangent to a curve. Its

solutions are

y
= ex + h(c)

Notice that the given curve y=/(x) also solves Equation (4.58) (because
it is derived from (4.56) and (4.57)which hold under the substitution y = f(x)).
It is called the singular solution of the equation.

48. The family of lines tangent to the parabola y
= x2 has the

implicit form

y
= c2 + 2c(x

-

c) = lex
- c2

Differentiating, we obtain y' = 2c. Thus c = \y'', so we can eliminate

c to obtain this differential equation of the family,

y
= /x-Ky')2

49. The family of lines tangent to the circle x2 + y2 = 1 is given

implicitly by

(1-c2)1'2
y xc

Then y' = c, so the Clairaut equation of the family is

(1
- (/fy2

y
=

yx r
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Family Orthogonal to a Given Family

50. Let F be a given family of curves. We propose to find a family

G of curves everywhere orthogonal to F. Thus, if p is a point in the

plane, and Y is the curve in F through p with tangent T1; and y is the

curve in G through p with tangent T2 we must have <T1; T2> = 0.

Suppose the family F is given by the differential equation (Figure 4.42)

a(x, y)x' + b(x, y)y' = 0 (4.59)

Thus, since (x', y') is the tangent field to F, we must have T2 collinear

with (a(x,y), b(x,y)) (for <Tl5 (a, b)) = 0 by (4.59)). Thus the

differential equation for the family G is

*'
=

y'
(4.60)

a(x, y) b(x, y)

Figure 4.42
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51. Find the family orthogonal to the family of hyperbolas

xy
= c

The differential equation of this family is yx' + xy' = 0. Thus the

differential equation of the orthogonal family is

x' y'

y x

or xx' yy' = 0 which integrates to x2 - y2 = c.

52. The family orthogonal to the family of parabolas in Example 45
is given by the differential equation

1 V'

y -2x

(here x is the parameter, so x' = 1). This integrates to

2,y2
* +

y
= c (4.61)

53. Find the family which makes an angle of n/4 with the family
(4.61). The differential equation of the family (4.61) is

2xx' + yy' = 0

The family orthogonal to this family has tangent collinearwith 2x + iy,
thus the family we seek has tangent collinear with this vector rotated

by n/4. Thus the tangent field is collinear with ei("/4)(2x + iy), or,
what is the same, (1 + i)(2x + iy) = 2x y + i(2x + y). Thus, the

differential equation is

2x y 2x + y

Envelopes

Many of the families we have been studying have the property that there

is a curve (or curves) which is not a member of the family but bounds the

family (see Figures 4.39-4.41). Similarly, for a family of lines tangent to a
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given curve, the curve bounds the family. Such a bounding curve is called

an envelope. We want to see how to find envelopes for families.

First of all, some families do not admit envelopes. Clearly, the families

x = c, y
=

c, y
= x2 + c do not admit envelopes. However, if an envelope

exists we can find it by the present techniques.

Definition 7. Let F be a family of curves in the plane. A curve Y is an

envelope for the family F, if through every point p in r there goes a curve in

Fwhich is tangent to Y at p.

Suppose that a family is given implicitly by

F(x, y,c) = 0

and that the curve Y: y =f(x) is an envelope of this family. Then, for every

x0 there is a c(x0) such that the curve C corresponding to F(x, y, c(x0)) = 0

is tangent to Y at (x, f(x0)). Thus we must have

F(x0,f(x0), c(xo)) = 0 (4.62)

and since the curve C has the tangent direction (l,/'(*o))> we must have, by

(4.54),

dF dF

-fa
(*o , /(*o)> c(x0)) +

y
(*o , f(x0), c(x0))/'(x0) = 0 (4.63)

Differentiating (4.62) with respect to x0 we also find

dF 8F dF

-dx
+

TyfiX)
+ TcC'(X)

=

<4-64>

Comparing (4.63) and (4.64) we have as a result

dF

dc
(x0 , f(x0), c(x0)) c'(x0) = 0 (4.65)

Thus if (x, y) is on the evenlope Y, there is a c such that

dF

F(x,y,c) = 0 (x,y,c) = 0
oc
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and we can eliminate c from this pair of equations to obtain an implicit
equation of Y. Notice that from (4.64), the equations

x ^
3F dF

F(x, y,c) = 0 _ + / = 0
dx dy

also hold on Y. Eliminating c from this pair we obtain once again the

differential equation of the family, so the envelope must also satisfy this

differential equation.

Examples

54. Find the envelopes of the family

(x - c)2 + (y - l)2 = 1 (4.66)

of Example 41. We differentiate with respect to c to find

2(x c) = 0 or x = c

Eliminating c we obtain (y l)2 = 1, or y = 2, y = 0.

55. Find the envelopes of the family

(x - c)2 + (y- c)2 = c2 (4.67)

of Example 42. We must eliminate c from this equation and

-2(x - c) - 2(y - c) = 2c

or

x + y
= c

Substituting this in (4.67) we obtain

(-j)2 + (-*)2 = (*+>')2

or

2xy = 0

Thus the envelopes are x = 0, y = 0.



378 4 Curves

56. Find the envelopes of the family

y
= x2 sin ex

Differentiation with respect to c yields

0 = ex2 cos ex

or

n 2>n
c = 0, cx = -,,...

The condition c = 0 gives y
= 0 which fails as an envelope. But

ex = n/2, 3tt/2 yields the envelopes y
= x2 (Figure 4.43).

57. Find the envelope of the family given by

y
= Xy' + (1 + {y')2)

This is a Clairaut equation and has the solution

y
= ex + 1 + c2

Figure 4.43
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Differentiation with respect to c yields

0 = x + 2c or c =
-

2

Thus the envelope of this family is the curve

3x2
1

y
= -+l

EXERCISES

12. Find the differential equations for these families of curves:

(a) xyc
= l (c) xec" = l

(b) sin xy a cos xy
= 0 (d) x sin y + c sin x = 0

(e) yec('+ = 1

(f ) sin(x + y+c) + cos(x + y + c) = 1

13. Find the implicit form of the family given by these differential

equations :

(a) xy'-yx'=0 (c) (y')2 + ^ = l

(b) x' + yy' = l (d) y + y'x + siny=0

(e) y'(sec x tan x) = \y

14. Find the implicit form and the differential equation of the family of

circles with center on the y axis and tangent to the x axis.

15. Find the family of ellipses with foci at (-1, 0), (0, 1).

16. Find the family of curves orthogonal to the family in Exercise 14;

Exercise 15.

17. Find the family orthogonal to the families of Exercises 12(a), (b),

(f), 13(b), (d).

18. Find the family making an angle of tt/3 with the family of Exercises

12(a), (b), (c).

19. Find the envelopes of the families of Exercises 12(a), (b), (c), (d), (e).

20. Find the envelopes of these families:

(a) y
= sin(x-c)2 (c) 13e

(b) 136 (d) y
= e*sincx

(e) The family of cardiods r
= (1 + c)_1(l + c cos 6).

(f ) The family r = sin ad.

PROBLEMS

38. Find the family of evolutes of the parabola y
= x2. Find the family

orthogonal to this family of evolutes.

39. Find the family orthogonal to the family of spirals r = cee.

40. A ladder 10 feet tall originally leaning against a building slips

(Figure 4.44). Find the family of curves which are the trajectories of the

points on the ladder.
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Figure 4.44

41 . Find the family of trajectories of the points on the circumference of a

ball rolling on a horizontal plane.

42. A line segment of length 2 has its endpoints on the parabola y = x1

Find the trajectories of points x0 on the segment as it slides along the

parabola (Figure 4.45).

43. A ball of unit mass is at the end of a string of unit length attached

to the top of a vertical bar rotating at constant angular velocity. Find the

path of motion of the ball assuming its position and velocity at time t = 0

to be (1, 0, 0), (1, 0, 1), respectively. Find the trajectory of any point on

the string.

44. Find the family of curves swept out by the midpoints of bars of given

length with endpoints along the curve xy = 1 in the first quadrant.

Figure 4.45

4.6 Vector Fields and Fluid Flows

We have come across vector fields several times already : the gradient of a

function, the gravitational field, a field of forces, are all vector fields. We

now want to study such fields in connection with fluid flows : motions of a

mass of noninterreacting particles.
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Figure 4.46

A vector field is a function which assigns to each point in a given domain

in R", a vector in R", usually considered as based at the given point. Thus,

a vector field defined on D in R" is nothing more than an Revalued function

on U, but interpreted pictorially as in Figure 4.46.

Examples

58. A body in space sets up a field of gravitational attraction.

Suppose there is a body of unit mass situated at the origin. According

to Newton's laws another body of unit mass is attracted to the given

body at the origin with a force proportional to the inverse of the

distance squared. We represent this attraction at a point p by a

vector directed toward the origin and of length ||p ||
"2

(see Figure 4.47).

Thus the gravitational field of a body situated at the origin is the

vector field defined on R3 - {0} by

or, in rectangular coordinates

, .

_

(x, y, z)

v(x,y,z)--(x2 + y>2 + z2)3/2

59. Given a family of curves, we may consider the field of unit

tangents to the family (Figure 4.48). In particular the field of tan

gents to the family of circles x2 + y2 = c2 is defined on R2 - {0, 0},
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Figure 4.47

and is given by

}

(x2 + y2f'2

The family of unit tangents to the family of rays is defined
R -

[0, 0} by
on

T(x, y) =
(x, y)

(x2 + y2)1'2

Figure 4.48
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If we are given a vector field v on a domain D in R", the questions arise: Is

it a field tangent to a family of curves, and if so, can we discover the curves ?

Suppose then that v is a given vector field in the domain D, and T is a

curve in D such that v(x) is tangent to Y at each point x on Y. Let f be a

function which parametrizes the curve Y. Then f '(0 is tangent to Y at f(0
so we must have f '(0 an(l v(f(0) collinear. In particular then, if f is a solution

of the differential equation

f
'

(0 = v(f(0)

then f parametrizes a curve tangent to the given field. In the terminology
of the preceding section

dx
, ,

--v(x) = 0

is the (parametric) differential equation of the family of curves tangent to

the vector field.

60. Suppose v(x, y) = (x, 2y). (Figure 4.49.) Then the family of

curves tangent to the vector field v is given parametrically by this

differential equation:

X' = x y' = 2y (4.68)

x(0) = x0 y(0) = y0

The solution is given by

x = Xoe' y
= y0e2t (4.69)

We can write this family of curves implicitly as

y-cx2 =0

(taking the constant c as y0 Xo 2). Thus the family we seek is a system

of parabolas.
Another way to find the implicit equation of the curve is to divide

one equation in (4.68) by the other:

dy
_

dyjdt
_

2y

dx dx/dt x

This we can solve directly by separation of variables.
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Figure 4.49
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61. Let v(x, y) = (x 4- y, 1). Then the differential equation is

dy dyjdt x + y

Tx=jxidr~r
or y=x + y

which has the general solution

y= -(x+ l) + cex

Now let us consider a fluid in motion in a domain D in R". The equations
of fluid motion are written as follows. We suppose that at time t = 0

there is a particle of fluid at each point x0 in D. The position of that particle
at the subsequent time t is denoted by <j)(x0 , t). The equation of motion

then is

x = <Kxo,0 (4-7)

For a fixed x0 ,
the curve described by (4.69) is the path of the particle which

is at x0 at time / = 0. Thus we are assuming that

xo
= <Kxo,0) (4.71)

It is also assumed that no two particles can ever occupy the same position

at the same time. Then for each t, the function <f>(x0 , t) is one-to-one and

thus can always be inverted : there is also a function i/^(x, 0 which describes

the f = 0 position of the particle at x at time t such that

x = </>(x0 , 0 if and only if xo
= <A(x, 0

Definition 8. Given the fluid motion described by Equation (4.70) its

velocity at the time t = 1
0
is the vector field

~St
t=t0

situated at the point x = 0(xo > *o)- If tne vector field is independent of

time, we say that the fluid motion is a steady flow.

Thus the velocity field of a flow at time t0 and point x is the velocity

v(x, t0) of the particle which is at x at that time. If the velocity is indepen

dent of the time, or the particular particle, the flow is steady. The flow in a

river of constant volume is determined by the shape of the river bed, and thus
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tends to be steady, whereas the flow of clouds in the sky is time dependent.
If the flow is steady, then the path lines (the curves described by (4.70)) are

the curves of the family tangent to the velocity field. If the velocity field is

time dependent, then these tangent families (called the lines of force) vary
with time and have little to do with the paths of individual particles. This is

easy to see. Suppose the flow

x = <Kxo,0 (4-72)

has the velocity field v(x, t). Then the path lines (4.72) are the solutions of

the differential equation

^ = v(x(0,0 x(0) = x0 (4.73)

The lines of force at time t = r0 are the solutions of the equation

dx
-

= v(x(r), t0) x(0) = x0 (4.74)

These are the same differential equations if and only if v(x, 0 = v(x, r0) for

all t, that is, if and only if the flow is steady.

Examples

62. Consider the flow in R2 given by Equation (4.67):

x = x0e' y
= y0e2' (4.75)

Then

x*=x0e' y' = 2y0e2' (4.76)

Thus the velocity at time t of the particle originally at (x0 , y0) is

(x0 e', 2y0 e2'). To find the velocity field we must solve (4.75) for

x0 , y0 in terms of x, t and substitute. Thus (4.76) becomes

x' = x y' = 2y

so the velocity field is v(x, y) = (x, 2y) and the flow is steady.
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63. Consider the flow in R3 given by

x =x0 + 1 y
=

y0 + t2 z = z0 + t3

x' = 1 y' = 2r z' = 3i2

Thus the velocity field

\(x,y, z) = (l,2t, 3f2)

is independent of position but is time dependent. In fact, the path

lines are independent of position and are just translates of the twisted

cubic (Figure 4.50). It is as if all of space were being rigidly trans

lated along the line curve y
= x2,z = x3. Notice that since the

velocity field at any given time t = t0 is a constant field, the lines of

force are straight lines.

64. x = x0 + t, y
= y0(l + t), z = z0e'. Then

= (1, y0,z0e')

so the velocity field is

v(x,y,z)=^l,^-^,zj

8x

~di

Figure 4.50
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the flow is not steady. The lines of force at time t = t0 are the solutions

of

x' = 1 y'=? z' = z

l + f0

so is the family

x = x0 + t y
=

y0 explyj z = z0e'

which is quite different from the family of path lines.

65. The flow is given by

x = x0e' y
= y0e~' + x0(e' - e~') z = z0 e2t

- x0(e' - e2t)

(4.77)

x' = x0e' y' =-y0e~' + x0e' + x0e~'

z' = 2z0e2t-x0(et-e2t) (4.78)

The Equations (4.77) are linear in x0 , y0 , z0 ,
so we may solve for these

in terms of x, y, z. Doing so, and substituting the result in '(4.78),
we obtain the velocity field of the flow,

v(x, y, z) = (x, 2x y,2z + x)

This flow is time independent, or steady.

It is an immediate consequence of the uniqueness assertion of Picard's

theorem that a flow is completely determined by its velocity field. For the

flow equation is the solution of the initial value problem (4.73), which is

unique. Notice also that the existence part of Picard's theorem asserts that

there always is a flow associated with a given velocity field (which is sufficiently

smooth).
The last remark we care to make at this time (we shall continue the study

of fluid flows in Chapter 8) is that in the case of a steady flow, the particles
follow one another along a fixed family of paths (whereas in general each

particle determines its own path). These are of course the lines of force.
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What we must show is this : If two particles x0 , xt occupy the same position
at different times (of course), then they follow the same paths. That is, if

there are s0 , ^ such that

<K*o > so) = </>(xi, 'i)

then the curves

T0 : x = (j>(x0 ,0 I\ : x = <Kxi, 0

are the same, except for parametrization. The following proposition proves

this, and more. It makes explicit the relation between the two parametriza-

tions.

Proposition 7. Suppose x = <j)(x0,t) describes a steady flow. Iffor some

(x0 , s0), (xu st), we have

(j)(x0 , s0) = (j)(xu st)

then

(l>(xo,So + t) = <t)(xi,s1 + t) for all t (4.79)

In particular, xt = (j)(x0 , s0
- s^).

Proof. The proof is simply that the two functions in (4.79) solve the same

initial value problem. Let v(x) be the velocity field of the flow (by assumption v is

time independent). Consider these functions

f(0 = 0(xo ,50 + /) fx(t) = #xi, s, + t) (4.80)

We have

f0(0) = fi(0)

Since

^(xo,0=v(#Xo,r))
ot
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for all x, t, we have

dia S

(r) =
-

<f>(x0 , *> + f ) = y(<t>(x0 , so + 0) = v(fo(0)

dU
(0 = v(f.(0)

Thus f0 , fi solve the same first-order differential equation and by (4.80) have the

same value at 0. Thus f0 = fi identically.

Planetary Motion

We conclude this chapterwith a study of the classical equations ofplanetary
motion. This study first requires these simplifications. We assume all

action is in a plane, and that the only force acting is that due to the sun's

gravitational field. These simplifications approximate the true situation with

enormous accuracy. For the other forces acting on the body are gravitational
forces due to other celestial bodies, which are either too far away or too small,

relative to the sun, to make a substantial contribution. According to

Newton's laws, the acceleration of a body due to the gravitational field is

proportional to the field. The motion is thus completely determined by
this force and an initial position and velocity. For if s = s(t) is the equation
ofmotion, then s is the solution of an initial value problem ;

s(0) = s0

s'(0) = v0

s"(t) = kF(s(t))

where F is the given force field.

Our purpose here is to describe the motion of planets in terms of an

observed position and velocity. If we locate the sun at the origin, then the

gravitation force field is given (in complex notation) by

Thus, we must explicitly solve this system

z(0) = z0

z'(0) = v0 (4.81)

w
wois
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The best way to solve this is by means of polar coordinates. Write

z(t) = r(t)e,ei'\ Then differentiating, we have

z' = r'ew + iO're'e (4.82)

z- = r"eie + 2ie'r'eie + i8"reie -(9')2reie (4.83)

and Equation (4.81) becomes

Z" = r"eie + 2i9'r'eie + id"rew - (e')2reie = - %'

r2 (4.84)

Multiplying through by e~'e, we obtain

r" - (d')2r + i(26'r' + r9") =
r̂

which reduces to this system (equating real and imaginary parts) :

r" - (6')2r =^ 20V + r6" = 0 (4.85)
r

The second equation reads

2(lnr)' = = 6-=(ln6'y
r t)

so either &' = 0 or 0' is proportional to r~2. We have then these two alter

natives. In one case 9 is constant, in which case the planet approaches the

sun along a straight line. In the other case, the planet rotates around the

sun at an angular velocity inversely proportional to the square of the distance

from the sun (the closer it is to the sun the faster it rotates around it). Notice

also that the solution r = constant, 9' = constant is possible, so that an

admissible path is that of circular motion of constant angular velocity. The

angular velocity decreases as the circle gets larger.

We proceed now to the full solution of (4.84). We already have 9'r2 = h,

a constant (determined by the initial conditions). From (4.84), we obtain

pie 1 i

r2 h h
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Thus we can integrate to obtain

z
'

= 1 e'e + C
h

Where C = peim is an arbitrary constant. Now, using (4.82) we have

r'eie + i9'rew = i eie + pe"

Multiply through by e
ie
and equate imaginary parts :

B'r = -+p sin(co - 9)
h

Once again using 9'r2 = h, we obtain this implicit relation between r and 9:

h = rl- + p sin(a) 9)\

or

r-l+p/,sin(a)-0) (4-86)

The constants p, h, co are to be determined by the initial conditions. Equation

(4.86) is the polar form of the equation of a conic with one focus at the origin.
If pA < 1, it is an ellipse; ph = 1, a parabola; and ph > 1, a hyperbola.
These are then the possible paths of motion of a planet, or comet, around the

sun.

EXERCISES

21. Find the family of curves tangent to the given vector fields:

(a) v(x, y) = (x, -y)

(b) y(x, y) = (-y,x)

(c) v(x, y, z) = (-x, -y, z)

(d) v(x, y, z) =(x, 1
, z)

22. Find a field of vectors tangent to these families:

(a) z = e(1+c'"

(b) z = ec+"

(c) x = let, y = 1 - (cO2

(d) x = x0 + t,y = e'y0 ,
z = sin t
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23. Find the velocity field of these flows:

(a) x(t) = (e~'xo ,y0 + t, e"'z0)

(b) x(0 = (x0(l + 0, yo(l + t), z0 + t2(x02 + y02))

(c) x(t) = (x0, ya + t, z0 cos t)

(d) x(0 =e-'(x0,y0,z0cost)
24. Find the flow with the given velocity field :

(a) v(0 = r(x,y, z) (c) Exercise 21(b).

(b) y(t) = t(y,x,l) (d) Exercise 21(c).
25. Is there a steady flow whose path lines are the trajectories of the

particles at (x0 , y0 , 0) at time t = 0 in the flow in Exercise 23(b) ?

PROBLEMS

45. Under what conditions on the velocity field of a flow are the lines of

force at all times the same as the paths of motion ?

46. Consider a flow which spirals around the line L : x = y
= z at constant

angular velocity, whose distance from the origin increases exponentially
with time and whose distance from L decreases exponentially with time.

Find the velocity field of the flow.

47. If we are given a family of curves in the plane we may consider the

tangent field of the family as well as its differential equation and the tangent

field of the orthogonal family as well as its differential equation. How are

all these formulas related ?

4.7 Summary

The image in R" of an interval under a one-to-one C1 function with a no

where vanishing derivative is called a curve. If Y is a curve given by the

function

x = f(0 a<t<b

the variable t is called the parameter of the curve. If

x = %if) a < t < p

is another parametrization of the curve, there is a one-to-one function

t = a(x)

mapping the interval [a, j3] onto the interval [a, b~\ such that

g(t) = i(c(x)) cc^x<p



394 4 Curves

If a' > 0 (a is increasing) we say that the parameters t, x induce the same

orientation on Y. This notion divides all parametrizations into two classes.

An oriented curve is one for which one of these classes, the well-oriented

parameters is chosen.

If F is a differentiate function of two variables such that VF is never zero,

then the equation F(x, y) = 0 defines a curve implicitly. For we can find a

parametrization

x=f(t) y
= g(t)

for the set F(x, y) = 0. Similarly, if F, G are two differentiable functions

of three variables such that VFand VG are everywhere independent in the set

F(x, y,z) = 0 G(x, y, z) = 0

implicitly defines a curve in R3.

If T is an oriented curve with a parametrization

x = f(0 a<t<b

the length of Y between i(a) and i(t) for a < t < b is defined to be the least

upper bound of all sums

Iiifc)-fa,-i)ii
;=i

over all choices of points t0 ,
. . .

, tk such that

a = t0 < t^ < < tk = t

If s(t) is this number, the function s = s(t), a<t<b gives a parametrization
of T. This is the parametrization by arc length, s is the solution of the

differential equation

*'(0=l|f'(OII

s(a) = 0

The unit tangent to a curve Y: x = x(s) is the vector T(s) = x'(s). The

tangent line is the line through f(s) spanned by this vector. The unit normal

to the curve is a choice of unit vector N(j) lying on the line spanned by T(s).
In two dimensions N is chosen so that the rotation T -* N is counterclock

wise. In three dimensions the T - N plane is called the osculating plane.
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The unit binormal'is the vector B so that the basis T -> N -> B is a right-handed
orthornormal basis : B = T x N. This frame is determined by these differ

ential equations, the Frenet-Serret formulas:

T' = kN

N'= -kT+ tB

B'= -tN

The scalar functions k, x, the curvature and torsion respectively of the curve

are defined by the first and third equations. The curvature k is the angular

velocity of the tangent in the osculating plane and the torsion is the angular

velocity of the osculating plane about the tangent. A curve in R3 is uniquely

determined (but for Euclidean motions) by its curvature and torsion. A

curve in R2 is uniquely determined (but for Euclidean motion) by its curvature.

If x = f(0 is the equation of motion of a particle, we call the curve de

scribed by this function the path of motion, ds/dt is the speed, f '(0 is the

velocity and f"(0 is the acceleration of the particle. The acceleration vector

lies in the osculating (T - N) plane. We can write

acceleration = aTT + aNN

where aT is the tangential acceleration and aN the normal acceleration. These

equations hold:

d2s (ds\2
aT

=

dT2
a

=

\Jt)K

where k is the curvature of the path of motion.

A family of curves in the plane is a collection of curves {Yc} as c ranges

through some set. A pair of equations

x = x(t, c) y
= y(t, c)

determines a family of curves. This is the explicit form of the family. A

functional equation

F(x, y,c) = o

also determines a family. This is the implicit form of the family. The set

of solutions of a differential equation

a(x, y)x' + b(x, y)y' = 0 (4.87)
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forms a family of curves in the plane. If

Fix, y, c) = 0 (4.88)

is the implicit form of a family its differential equation is found by eliminating
c from (4.88) and

'

>-o

dx dy

If (4.87) is the differential equation of a family F, the family of curves ortho

gonal to the family Fis given by the differential equation

b(x, y)x' + a(x, y)y' = 0

A vector field in a domain U <= R" is an Rn-valued function defined in U.

The vector associated to a particular point in U is depicted as originating at

that point. A fluid flow is given by the function

x = <p(x0 , 0

with these properties :

(i) <p(x0 , 0) = x0 .

(ii) <)> has continuous partial derivatives.

(iii) For each t the function x = <|)(x0 , t) is invertible.

The curves x = <|>(x0 , 0 x0 fixed, are the paths ofmotion of the flow. The

velocity v(x, 0 of the particle at x at time t is the velocityfield of the flow

V(X, 0 =
"^

(X0 , 0 |x =Kxo, 0

If v is independent of t, the flow is steady. The velocity field of a flow

completely determines the flow, for the paths of motion are obtained by

solving the differential equation

dx

^
= v(x,0

x(0) = x0

When the flow is steady the paths of motion do not change with time, and

particles on the same path remain on the same path.
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FURTHER READING

In addition to the bibliography at the end of Chapter 3, we should also

mention these excellent texts on differential geometry :

D. Struik, Lectures on Classical Differential Geometry, Addison-Wesley,

Reading, Mass., 1950.

H. Guggenheimer, Differential Geometry, McGraw Hill, New York, 1963.

R. T. Seeley, Calculus, Scott-Foresman, Glenview, 111., 1967 has a deriva

tion of Newton's law of gravitational attraction from Kepler's laws.

MISCELLANEOUS PROBLEMS

48. Suppose that y is a closed curve in the plane which lies outside the

unit disk and encircles the origin. Show that the length of y is at least 2tt.

49. Suppose that y is a closed curve lying completely inside the unit disk

with the property that it crosses every ray once and only once. Is there an

a priori bound on the length of y ?

50. Suppose that y is a curve as described in Problem 49, whose curvature

is bounded by 1 . Is there now a bound to the length of y ?

5 1 . A pendulum consists of a body ofmass m hanging on a rope of length

L which is fixed at one end. If the mass is displaced from the vertical and let

go it will swing along the circle of radius L. Find the differential equation

of the motion.

52. Suppose a particle is moving along the curve of Example 20 at con

stant speed. Find the speed of its projection onto the xy plane.

53. Suppose that a particle moves along the right circular cone according

to the equation

x = (cos t, sin t, 2t)

Find the equation of motion of the projection of the particle on the plane

x = l.

54. A horse is running around the elliptical track

x< + 2y2 = 1

at constant speed. There is a wall along the line y = 1 and a floodlight

at the point (0, 1) which casts the horse's shadow on the wall. Find the

equation of motion of the shadow.

55. A man six feet tall walks at constant speed along a straight line

passing directly beneath a street lamp 12 feet off the ground. Find the

equation of motion of the head of the man's shadow cast by the street lamp.

56. A loose foot bridge of length L hangs across a chasm of width W

(L > W). A man appears at one entrance on a pair of roller skates.
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Suddenly he lets go and begins skating down the bridge. Assuming the

only forces acting on him are those due to gravity and the restraining forces

of the bridge, find the differential equation governing his motion.

57. Why does a river going around a curve wear out the far bank and

deposit silt along the near bank directly after the curve ?

58. Suppose a disk of radius r rolls with constant speed (at the center)

along a disk of radius R in the plane. Find the equation of motion of a

typical point on the circumference of the smaller disk.

59. Find the differential equation of the motion of a ball rolling in a

parabolic dish (with profile y = x2) starting at rest at some point other than

the center.

60. Assuming that the population of the organisms on a given remote

island remains bounded, can you say anything about the eigenvalues of the

biotic matrix ?

61. Find the curvature and torsion of these curves in R3:

(a) x = (u sin u, 1 cos u, 3)

(b) x = (sin u, 1 + cos u, sin u)

62. Let x = x(s) be the equation of a curve y in R3 whose tangent vector

T(s) traces out a circle on the sphere. Show that y is a helix.

63. A general helix is a curve lying on a surface of revolution z =f(r)
which cuts the curves z =f(r), 8 = constant at a fixed angle. Show that

the ratio k/t is constant on a helix.

64. Find the curve on the xy plane onto which a helix on a cone projects.

65. Let yi and y2 be two space curves for which we have a point for point

correspondence such that the line joining corresponding points is the normal

line to both curves. Show that the line segment between corresponding

points has constant length.

66. Let x = x(0 be an i?"-valued function of a real variable which is

-times continuously differentiable. Then the image of y is a curve in R".

The Frenet-Serret frame of y is the orthonormal set obtained by applying
the Gram-Schmidt process to the vectors

x'(0,x*(/),...,x"(0

(a) Show that for n = 3, the Frenet-Serret frame is T, N, B.

(b) Show that if there are only k independent vectors in the Frenet-

Serret frame at every point, the curve lies in a linear subspace of dimen

sion k.

(c) Suppose that the Frenet-Serret frame Ti, T2 ,
. . .

, T is a basis.

Show that the matrix representing the vectors dT,jds, .
.., dTJds in this

basis is skew-symmetric. These are the generalized Frenet-Serret formulas.

67. Find the Frenet-Serret formulas for the curve

x = (cos /, sin t, t, 2t)

in/?4.
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68. Kepler's laws of planetary motion (from which Newton derived his

law of gravitational attraction) are these :

I. For each planet the ray from the sun to the planet sweeps out

equal areas in equal times.

II. The path of motion of each planet is an ellipse with the sun at

one focus.

III. The square of the time period required to make one revolution

is proportional to the cube of the major axis of the ellipse. This constant

of proportionality is the same for all the planets.

In the text we have derived Kepler's second law from Newton's laws.

Now derive Kepler's first and third laws.
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